
base memory object#

The object structure is shared between both the pathmgr and memmgr components of procnto. They mostly
keep to themselves, but there were a couple of places where interface breaking goes on - these are marked with
comments in the source.

struct mm_object {
 struct object_header hdr;

 struct pathmgr_stuff {
 time_t mtime;
 mode_t mode;
 uid_t uid;
 gid_t gid;
 } pm;

 struct memmgr_stuff {

 struct proc_mux_lock *mux;
 struct pa_quantum *pmem;
 struct pa_quantum **pmem_cache;
 struct mm_object_ref *refs;
 struct pa_restrict *restrict;
 off64_t size;
 unsigned flags;
 } mm;
};

The pm fields are for use by path manager.

mux
For locking/unlocking the memory object via the proc_mux_[un]lock functions.

pmem
The head of the list of physical memory for the object.

pmem_cache
Used for optimization purposes while walking the pmem list

refs
The head of the list of address spaces that are currently referencing this object.

restrict
When allocating physical memory for this object, the memory has to obey this restriction list.

size
The size in bytes of the object.

flags
Various flags for the object - some flags are common across all the types of memory objects, some flags
are unique to each different type.

OBJECT_MEM_ANON#

struct mm_object_anon {
 struct mm_object mem;
};

OBJECT_MEM_SHARED#

struct mm_object_shared {
 struct mm_object mem;
 volatile unsigned name_refs;
 unsigned special;
 intptr_t vaddr;
};

name_refs
This should really be a pathmgr thing, but then all the objects would have the space allocated. It's the
number of open file descriptors for the object.

special
This holds the value of the special parameter of the shm_ctl_special function.

vaddr
For shared objects using global addresses (e.g. ARM above 32M), this field holds the base address of the
object.

OBJECT_MEM_FD#

struct mm_object_fd {
 struct mm_object mem;
 int fd;
 time_t ftime;
 ino_t ino;
 dev_t dev;
 char *name;
 unsigned pending_dones;
};

fd
The file descriptor obtained from _IO_MMAP that procnto uses to read/write to the backing file for the
object.

ftime, ino, dev
These values are obtained by a stat of the file and are used by the memmgr to determine when the
underlying file has been modified.

name
The debugging name of the object.

pending_dones
used to prevent a race condition when freeing the object.

OBJECT_MEM_TYPED#

struct mm_object_typed {
 struct mm_object_shared shmem;
 char *name;
};

mm_aspace (ADDRESS)#

struct mm_aspace {
 struct mm_map_head map;
 struct {
 uintptr_t vmem;
 uintptr_t data;
 uintptr_t stack;
 uintptr_t memlock;
 uintptr_t rss;
 } rlimit;
 OBJECT *anon;
 struct _memmgr_rwlock rwlock;
 unsigned fault_owner;
 unsigned flags;
 uintptr_t tmap_base;
 size_t tmap_size;
 struct cpu_mm_aspace cpu;
};

map
Head of the vaddr to struct mm_map conversion structure.

rlimit
Holds the current usage various rlimit pieces.

anon
Pointer to the OBJECT_MEM_ANON object for the address space.

rwlock
Used for reader/writer locks on the address space.

fault_owner
In some cases we could have an address space locked and be performing some request which causes a
page fault to occur. Normal fault handling will attempt to lock the address space again. This field is used
by the fault handling code to recognize when the faulting thread is a memmgr one that already had the
aspace locked, so the fault code doesn't have to do so again (avoiding a deadlock).

flags
Various aspace related flags.

tmap_base, tmap_size
The memmgr sometimes has to read/write data into physical memory that it currently does not have a
mapped virtual address. These fields give the base and size of the last temporary mapping region that we
used. If no mmap's have been done in the meantime, we can reuse that region, saving us from having to
look for a new one.

cpu
All the CPU specific address space fields.

mm_map#

struct mm_map {
 struct mm_map *next;
 struct mm_object_ref *obj_ref;
 off64_t offset;
 struct {
 struct mm_map *next;
 struct mm_map **owner;
 } ref;
 uintptr_t start;
 uintptr_t end;
 int reloc;
 unsigned mmap_flags;
 unsigned extra_flags;
 unsigned short last_page_bss;
 uint8_t spare;
 volatile uint8_t inuse;
};

next
Pointer to the next squentially higher mapping in this aspace.

obj_ref
Pointer to the struct mm_object_ref for this mapping.

offset
The offset from the start of the object for this mapping.

ref.next
The next mapping in this address space that references the same object as this one.

ref.owner
A pointer to a pointer of previous mapping in this address space that references the same object as this one.

start
The starting virtual address of this mapping.

end
The last valid virtual address of this mapping.

mmap_flags
The combination of the mmap flags and prot parameters.

reloc
The debugging relocation.

extra_flags
Some other additional flags for this mapping.

last_page_bss
With a MAP_ELF mapping, the memmgr code determines if the final page of a mapping would go beyond
the end of the filesz field of the ELF segment. In that case, the last_page_bss field indicates how many
bytes at the end of the page should be zeros.

inuse
Whether there are still people pointing at this structure, even though the aspace has been unlocked.

mm_object_ref#

struct mm_object_ref {
 struct mm_object_ref *next;
 struct mm_aspace *adp;
 OBJECT *obp;
 struct mm_map *first_ref;
 int fd;
};

next
Pointer to the next struct mm_object_ref for the object.

adp
Pointer to the address space for this reference.

obp
Pointer to the actual object for this reference.

first_ref
Pointer to the head of the linked list of struct mm_maps that reference the given object in the given address
space.

fd
The user file descriptor that was passed into mmap for the mapping.

pa_quantum#

struct pa_free_link {
 struct pa_quantum *next; // must be first entry
 struct pa_quantum **owner;
};

struct pa_inuse_link {
 struct pa_quantum *next; // must be first entry
 _Uint32t qpos;
};

struct pa_quantum {
 union {
 struct pa_inuse_link inuse;
 struct pa_free_link flink;
 } u;
 _Int32t run;
 _Uint16t blk;
 _Uint16t flags;
};

u.flink
Doubly linked list used when the quantum is not in use.

u.inuse
Singly linked list used when quantum is in use.

run
There's one pa_quantum for each page of system ram in the system. These are collected into contiguous
runs - either allocated or unallocated. For the first quantum in a run, the run field indicates the number of
quantums in the run. The last quantum has the same value in it's run field, but negated. The quantums in
the middle have zero for the field.

blk
This field holds the block number for the quantum. A block is a contiguous sequence of system ram.

flags
Various flags.

pa_quantum_fake#

struct pa_quantum_fake {
 struct pa_quantum q;
 paddr_t paddr;
};

Since the physical memory list of an object must be made up of quantums, and we only allocate enough
pa_quantum's to cover the system ram for a box, something special has to be done when the user requests a
direct physical mapping. In those cases, we create a pa_quantum_fake. These differ from a normal pa_quantum
in that they have a paddr field attached to them to give the physical address (normal pa_quantum's obtain the
physical address from information in the block head structure) and the fact that no matter how many pages the
mapping is for, only one pa_quantum_fake structure is allocated, as opposed to the array of pa_quantum's that
would be used to cover the same amount of physical memory. Code can tell the difference between the two by
the fact that pa_quantum_fake's blk field is set to PAQ_BLK_FAKE.

