QNX" Aviage Multimedia Suite 1.2.0
MME Developer’s Guide

For QNX" Neutrind’ 6.4.x

[J 2009, QNX Software Systems GmbH & Co. KG.

[0 2007-2009, QNX Software Systems GmbH & Co. KG. All rights reserved.
Published under license by:

QNX Software Systems I nternational Corporation
175 Terence Matthews Crescent

Kanata, Ontario

K2Mm 1w8

Canada

Voice: +1 613 591-0931

Fax: +1 613 591-3579

Email:i nf o@nx. com

Web: htt p: // www. gnx. conf

Electronic edition published February 13, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GnitiH &1d are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Reference Xi

Typographical conventions xiv
Note to Windows users ~ xv

Technical support options ~ xv

1 Control Contexts, Zones and Output Devices 1
About control contexts, zones and output devices 3
Control contexts 3
Zones 5
Output devices 6
Configuring the MME for multi-zone support 6

Sample configurations 6

Configuring the MME for multi-node support 7
Getting media on a remote node 7
Outputting to a remote node 8

Configuring the MME for video support 8
Adding modifiers to a video output device URL 9
Example: Defining a video output device 10
Runtime control of zones and output devices 10
Adding and removing zones and output devices 10
Making output devices “permanent” 10
Managing output attributes 11

2 Starting Up and Connecting to the MME 13
Connecting to the MME 15
The MME connection handle 16
Making the connection 17
Disconnecting from the MME 17
Shutting down the MME 17
Using the MME notification interface 18
Registering for events 18
MME eventclasses 20
Getting events 21

February 13, 2009 Contents iii

[J 2009, QNX Software Systems GmbH & Co. KG.

v

Contents

Unregistering for events 21
MME and QDBsl og codes 21

Working with the MME Database and SQL 23
Time values in the MME database 25
Solutions for database deadlock issues 25
Different database file attached orders 25
Using a QDB client to verify attached order 26
Separating deadlock issues from performance issues 26
Handling of corrupt database 26
Optimizing your SQL 27
Design for size and limit queries 27
Use Indexes 28
UseJOINs carefully 28
Filtering out unavailable tracks 28

Working with Mediastores 29
Detecting mediastores 31
Mediastore states 31
CD detection and presentation 34
Recommended method for detecting mediastores 35
Manually requesting device and mediastore detection 35
Mediastore identifiers 35
Mediastore and device capabilites 37
Mapping mediastore filesystem paths to device locations 37
Associating devices and mediastores inghet s table 38
Handling external disk changers 38
Handling removed mediastores 39
Handling reloaded mediastores 39
“Manually” updating thd i brary table 39

Synchronizing Media 41
The synchronization process 43
Synchronizer selection 43
Multiple synchronization passes 44
The synchronization pass process 45
Tracking mediastore synchronization status 45
Nonblocking synchronization function calls 46
Pending synchronizations 46
Optimization of synchronization for starting playback on slow devices
Ignoring specified file types 46

46

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

Database clean up during synchronization
Folder synchronization 47
Synchronizing playlists 49
Types of synchronization 49
Full, recursive synchronization 50
Directed synchronization 50
File synchronization 50
Updated database tables 51
Media information and metadata 51
Custom information and metadata 51
Working with synchronizations 51
Determining if resynchronization is needed
Skipped synchronizations 52
Setting a priority folder 52
Removing file entries from the MME tables
Repairing inconsistencies 54
Determining if a file should be shown 55
Gracenote classical music support 55

Playing Media 57
About playing media with the MME 59
Working with track sessions 59
Creating track sessions 61
Setting track sessions 64
Clearing track sessions 66
Deleting track sessions 66
Monitoring and managing playback 67
Setting the playback notification interval
Knowing when playback has ended 68
Using random and repeat modes 68

Starting playback from a specific track 69

Pausing playback 70

Stopping and resuming playback 70
Using fast forward and reverse 74
Using seek to time, play at offset, and scan
Gapless playback 75

Viewing “previous” and “next” tracks 75
Using play frequency statistics 75
Bookmarking tracks 76

Managing track sessions during playback 76
Managing track changes across multiple mediastores

47

52

54

67

75

76

Contents

\Y

[J 2009, QNX Software Systems GmbH & Co. KG.

Managing track sessions when a mediastore is removed 76
Switching playback to another track session 77

7 Playlists 79
Creating track sessions from playlists 81
Excluding missing playlist files from track sessions 81
Combining playlists into a track session 82
Examining playlists 82
Creating playlists 83
Deleting a playlist 83

8 Unsynchronized Media 85
Exploring unsynchronized mediastores 87
Using directed synchronization to browse mediastores 90

9 Metadata and Artwork 91

Getting metadata 93
Getting metadata for synchronized media 93
Getting metadata for unsynchronized media 94
Getting metadata from theowpl ayi ng table 95
Getting metadata from a remote source 96
Metadata ratings 96

Getting artwork 97
Functions and data structures 97
l'i bxnl 2. so library and headers 98
Feature limitations 98
Using the metadata extraction API 99
Image pre-processing 100

10 Playing and Managing Video and DVDs 103
Playing and managing video 105
Playing video files 105
Managing video attributes 105
Playing and managing DVDs 106
DVD synchronization 106
Playing DVDs 106
Setting the default preferred media language 107
Managing DVD access 108

11 Playback Errors 109
CD drive timeout 111

Vi Contents February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

12

13

14

Playback buffering 111
Playback read error recovery 112
Stopping playback after repeated playback failures
Marking unplayable files 113
What files are marked as “unplayable” 114
Skipping “unplayable” files 114
Handling damaged media 114

Copying and Ripping Media 117
About media copying and ripping 119
The copying and ripping process 119
Monitoring progress and playback 119
Priority background ripping 119
Copying and ripping media 120
Setting the copy or ripping mode 120
Copy folder paths and ripping templates 121
Building the copy queue 123
Starting media copying or ripping 125
Stopping media copying or ripping 125

Behavior when media copying or ripping encounters an error

Behavior when a mediastore is removed 125
Managing the copy queue 125
Modifying media metadata 126

External Devices, CD Changers and Streamed

Media 127
Getting and setting device options 129
Device option configuration APl 129
Getting and setting device configuration values

Determining the iPod connection and capabilities

Working with external CD changers 133
Working with internet streamed media 133

Configuring the MME to support streamed media

Playing streamed media 134

Working with iPods 137

113

129
132

133

Installing MME components for external media players

Connecting to and using iPods 139
Required components 140
Authenticating iPods 140
Connecting to iPods 141

125

Contents

Vil

[J 2009, QNX Software Systems GmbH & Co. KG.

Detecting iPods 148
Removing iPods 148
Synchronizing iPods 149
Playing media oniPods 150
Displaying information from an iPod 156
Uploading splash screens to iPods 158
HD radio tagging 158

Link kit for iPod authentication 159
About the iPod authentication link kit 159
The sample iPod ACP module 160
Using the iPod ACP module 162

15 Working with PFS Devices 165
Installing MME components for external media players 167
Directed PFS device startup 167
Detecting and synchronizing PFS devices 167
Optimizing PFS device synchronization 168
Playing media on PFS devices 168
Playing DRM content 168
Decryption of DRM content 169
Retrieving artwork from Zune devices 169
Devices that don’t suppo@et Parti al Cbj ect 170

16 Working with Bluetooth Devices 171
Integrating Bluetooth audio devices into the MME 173
Creating a Bluetooth device representation to the MediaFS specification 174
Thei o- f s- nedi a module example 174

What thei o- f s- medi a module example does 174
avrcp _devctl() 175
avrcp_mount() 175
avrcp_options() 176
avrcp timer() 176
The mount process 176
Theavr cpexanpl e. h header file 176
Modifying thei o- f s- medi a module example 177
Adding device-specific code to the module 177
Building the module 178
Using thei o- f s- nedi a module 178
Messages for controlling Bluetooth devices 179
Playback messages 179
Metadata messages 180

Vviii Contents February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Using Bluetooth devices with the MME 180
Configuring the MME for Bluetooth support 181
Playing media on Bluetooth devices 181

17 MME Sample Applications 185
me-shuffle 188
mre- pl ayer-sinple 189
mme- cdri pper 191
mre- pl ayer - nul ti source 193

Glossary 195

Index 201

February 13, 2009 Contents iX

About this Reference

February 13, 2009 About this Reference Xi

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

The MME Developer's Guideaccompanies the QNX Aviage multimedia suite. It is
intended for application developers who use the suite’s MultiMedia Engine (MME) to
develop multimedia applications.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

The table below may help you find what you need in this book:

For information about: See:

Understanding and using control Control Contexts, Zones and Output
contexts, zones and output devices Devices

Connecting to the MME and registering Starting Up and Connecting to the MME
for events

Working with the MME database Working with the MME Database and
SQL

Working with mediastores Working with Mediastores

Synchronizing media Synchronizing Media

Playing audio media files Playing Media

Working with playlists Playlists

Exploring and playing unsynchronized Unsynchronized Media
media

Metadata and artwork Metadata and Artwork

Playing and managing video and DVD Playing and Managing Video and DVDs
mediastores

Playback errors and how to manage Playback Errors

them

Copying and ripping media Copying and Ripping Media
Working with internet streamed media, External Devices, CD Changers and
and with CD changers Streamed Media

Working with iPods devices Working with iPods

Working with PFS devices Working with PFS Devices
Working with Bluetooth devices Working with Bluetooth devices

MME sample applications and sample MME Sample Applications
source code

continued. ..

About this Reference Xiil

Typographical conventions 0 2009, QNX Software Systems GmbH & Co. KG.

For information about: See:

Terminology used in this guide Glossary

For an overview of the MME architecture and instructions on how to get the MME
started and playing media, skgroduction to the MMEFor information about the
QDB database engine used by the MME and client applications, s€zBe
Developer’'s Guide

Other MME documentation available to application developers includes:

Book Description
Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME API Library Reference MME API functions, data structures, enumerated
types, and events.

MME Utilities Utilities used by the MME.
MME Configuration Guide How to configure the MME.

MME Technotes MME technical notes.

QDB Developer’'s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream== NULL)
Command options -IR

Commands make

Environment variables PATH

continued. ..

Xiv About this Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Technical support options

AN
/9

Reference Example
File and pathnames / dev/ nul |
Function names exit()

Keyboard chords
Keyboard input
Keyboard keys

Program output
Programming constants
Programming data types
Programming literals

Variable names

Ctrl-Alt-Delete

sonet hi ng you type
Enter

| ogi n:

NULL

unsi gned short

OXFF, " message string"

stdin

User-interface componentsCancel

We use an arrow-) in directions for accessing menu items, like this:
You'll find the Other... menu item undePer spective— Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.

WARNING: Warningstell you about commands or proceduresthat could be

dangerousto your files, your hardware, or even your self.

Note to Windows users

In our documentation, we use a forward slashds a delimiter irall pathnames,

including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options

To obtain technical support for any QNX product, visit Bugpport + Services area
on our websiteww. gnx. com). You'll find a wide range of support options,

February 13, 2009

including community forums.

About this Reference XV

Chapter 1

February 13, 2009

Control Contexts, Zones and Output
Devices

In this chapter...

About control contexts, zones and output devices 3
Configuring the MME for multi-zone support 6
Configuring the MME for multi-node support 7
Configuring the MME for video support 8
Runtime control of zones and output devices 10

Chapter 1 e Control Contexts, Zones and Output Devices 1

[2009, QNX Software Systems GmbH & Co. KG. About control contexts, zones and output devices

This chapter describes how to use control contexts, zones and output devices in the
MME. For more detailed information about how to start the MME and how to connect
to it, see the chapter Starting Up and Connecting to the MME in this guide, and the
“MME Quickstart Guide” in thentroduction to the MME

About control contexts, zones and output devices

To use the MME, you need to define at least one control context in the

cont r ol cont ext s table in the MME database. With one control context defined,

you can connect to the MME. To play media, you also need to define at minimum one
output zone and one output device.

e Control contexts
e Zones

e Output devices

Control contexts

A client application works with the MME in aontrol context The MME is a resource
manager, and control contexts are the mount points to the MME resource manager.
They are responsible for managing requests from the client applications, and for
directing other components in the MME aind- nedi a to complete these requests.

The client application connects to an MME control context in order to be able to
create, set and play track sessions, synchronize mediastores, copy and rip files, play
tracks, and perform other operations with the MME.

Control contexts are defined statically in the MME database table before the MME
starts up. They exist regardless of whether or not clients are connected, and regardless
of how many clients are connected. Each control context in the MME has its own
thread, so the MME is capable of scaling with as many control contexts as required.

Client application connections to a control context

February 13, 2009

Multiple client application connections can be made to a single control context, but a
control context will manage only one track session at a time, and will control only one
i 0- medi a instance at a time. Theo- nedi a that is controlled by the control context

will output to only one output zone at a time.

The figure below shows:

e the one-to-many relationships between an MME process and control contexts, a
control context and client application connections, and between an output zone and
output devices.

e the one-to-one relationship between a control context and an instance of
i o- medi a, and an instance &fo- nedi a and an output zone.

Note that there is also a one-to-one relationship between control contexts and output
zones.

Chapter 1 e Control Contexts, Zones and Output Devices 3

About control contexts, zones and output devices 0 2009, QNX Software Systems GmbH & Co. KG.

4

Clients

MME

Control contexts

MME
process .

io-media

Output zone

Output devices

Client, control context, MME process, i 0- nedi a, output zone and output device relationships.

The MME’s design allows client applications to be built to use only one connection to
the MME, or to use multiple connections, with, for example, one connection,
“frontseat”, to perform all operations, and another connection,“backseats”, functioning
as a passive output connection that outputs media controlled and played by “frontseat”.

The figure on the next page illustrates an implementation of MME with two control
contexts in an automobile.

Other possible implementations might be in a home entertainment system where
multiple clients connect to a single control context from different interfaces in the
house, or an implementation for an aircraft entertainment system that would run the
MME in a central location and a control context with an instancemfredi a at

every seat to offer passengers play-on-demand music and video.

Chapter 1 e Control Contexts, Zones and Output Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. About control contexts, zones and output devices

HMI HMI HMI
(Steering (Front (Left
wheel) panel)] headrest)
\ }(MME process \4
ControlContext ControlContext
(Front seats) (Rear left seat)
TrackSession io-media TrackSession io-media
(1) Graph handle (2) Graph handle
v ¥ v ¥
Zone Zone
(Main speakers) (Rear left)
Front
speakers Bluetooth
headset
Rear (1)
speakers
io-media io-media

lllustration of MME implementation with two control contexts.

Setting the maximum number of control contexts

The maximum number of control contexts is configured in the MME configuration file
mme. conf . For more information, see “Global settings” in teME Configuration
Guide

Zones

Zonesare passive output containers through which the MME sends played media to
output devices. Zones can be:

e created at start up
e created or removed as required while the MME is running

e attached to a control context or detached from a control context while the MME is
running

For more information, see “Example configurations” and “Runtime control of zones
and output devices” below.

February 13, 2009 Chapter 1 e Control Contexts, Zones and Output Devices 5

Configuring the MME for multi-zone support [2009, QNX Software Systems GmbH & Co. KG.

Output devices

The MME sends playback from a control context only to the zones attached to that
control context. For example, in an automobile with two zones: “driver” and
“passengers”, the zone “passengers” could be attached to a control context playing a
video, while the zone “driver” would not be attached. A DVD-video played back in

the control context would be available only in the zone “passengers”, but not in the
zone “driver”.

An output device is a device to which media content can be output. Three classes of
output can be sent to devices:

e audio content
e video content

e encoded content, which is sent to a remiode nedi a for decoding

Configuring the MME for multi-zone support

The MME uses combinations of control contexts, zones and output devices to play
media and direct output to the output locations requested by end-users:

e Control contexts are permanent; they cannot be created or removed while the MME
is running. Your MME start up routines should therefore create all the control
contexts your implementation will need.

e Zones can be created at start up, but can also be added or removed by calls to the
MME API, as required while the MME is running.
Since you need a zone to which you can send media output, you need to create at
least one zone at start up. The only exception to this rule is if youonl be
routing analog output from an iPod directly to an output device, without passing it
through the MME.

e Output devices can be added and removed through the MME API, so you do not
need to add them at startup. It is good, practice, however, to attach one output
device per zone so that the system is ready for playback and output when it has
completed its startup routines.

Since there is a one-to-one relationship between control contexts and zones, a
common approach at start up is to create all the control contexts required, a zone for
each control context, and attach at least one output device to each zone.

Sample configurations

The examples below show how to set up control contexts, zones and output devices at
startup.

6 Chapter 1 e Control Contexts, Zones and Output Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Configuring the MME for multi-node support

Example: Defining one control context, zone and output device

The example below shows how to define, in time database schema, a single control
context and one zone with a single output device.

I NSERT | NTO zones(zoneid, nanme) VALUES (1,' Zonel');

I NSERT | NTO out put devi ces(type, permanent, nane, devicepath)
VALUES(1, 1, ’'defaul toutput’, ’'/dev/snd/pcnCODlp’);
I NSERT | NTO zoneout put s(zonei d, outputdeviceid)
SELECT 1, outputdeviceid FROM out put devi ces
WHERE nane=’ def aul t out put’ ;
I NSERT | NTO renderers(path)
VALUES('/dev/io-nedia);
I NSERT | NTO control contexts(zoneid, rendid, nane)
VALUES(1, 1, 'default’);

Example: Defining multiple control contexts, zones and output devices

The example below shows how to define in tie database schema, two control
contexts and two output zones with one output device per zone.

I NSERT | NTO zones(zoneid, name) VALUES (1, Zonel);
I NSERT | NTO out put devi ces(type, permanent, nane, devicepath)
VALUES(1, 1, 'outputl’, ’'/dev/snd/pcnCODlp’);
I NSERT | NTO zoneout puts(zonei d, outputdeviceid)
SELECT 1, outputdevicei d FROM out put devi ces
WHERE nane=' outputl’;
I NSERT | NTO renderers(path) VALUES('/dev/io-nedia);
I NSERT | NTO control contexts(zoneid, rendid, nane)
VALUES(1, 1, 'ccl');
I NSERT | NTO zones(zonei d, nanme) VALUES (2,’ Zone2');

I NSERT | NTO out put devi ces(type, permanent, nane, devicepath)
VALUES(1, 1, 'output2', ’'/dev/snd/ pcnmCOD2p’);
I NSERT | NTO zoneout puts(zonei d, outputdeviceid)
SELECT 2, outputdevicei d FROM out put devi ces
VWHERE nane=’ out put 2" ;
I NSERT | NTO control contexts(zoneid, rendid, nane)
VALUES(2, 1, 'cc2');
After you have defined your output zones, you must create them in your control
context and attach your output to them. For instructions, see “Runtime control of

zones and output devices” below.

For more information about how to configure the MME, seeNWE Configuration
Guide

Configuring the MME for multi-node support

The MME can get media and send output to a remote node, as required.

Getting media on a remote node

The MME uses the MCD (Media Content Detector) utility to detect media content.
This utility supports media content detection across a network. To access media on
remote devices, you must configure:

February 13, 2009 Chapter 1 e Control Contexts, Zones and Output Devices 7

Configuring the MME for video support [2009, QNX Software Systems GmbH & Co. KG.

e the MCD to detect media at the remote location of your device
e configure the MME'ss| ot s table with these remote devices and their paths

For information on how to configure the MCD for multi-node support, see
“Configuring multi-node support” in the chapter Configuring Device Support of the
MME Configuration GuideFor more detailed information about the MCD, see the
MME Utilities Reference

For more information about configuring the slots table for supported devices, see
“Configuring thesl ot s table for supported devices” in the chapter Configuring
Device Support of thé&AME Configuration Guide

Outputting to a remote node

The MME supports output to devices across a network. To output to a device on a
remote network node, you need to:

e set the path to the device on the remote node irotheput devi ces table
e configure thesl ot s table for supported devices
e attach that device and its zone to the control context with the playback

You can use an output device that is accessible over Qnet by specifying the full path to
the device in your client application, or by setting the device path in the

nmme_dat a. sql . For example, by changingdev/ snd/ pcnCoD1p (for a local output
device) to/ net . . . fullpath . ../ dev/ snd/ pcnCOD1p for a remote output device:

I NSERT | NTO out put devi ces(type, permanent, name, devi cepath)
VALUES(1, 1, defaultoutput’, ’'/net/edosk7780/dev/snd/ pcnCODlp’);

Configuring the MME for video support

To configure the MME for video support, you must add the URL of a video output
device to the MME'sout put devi ces table, as follows:

I NSERT | NTO out put devi ces(type, pernmanent, nanme, devicepath)

VALUES(1, 1, ’defaul toutput2’,
' of : deviceentry?param®param?2) ;

8 Chapter 1 e Control Contexts, Zones and Output Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Configuring the MME for video support

Y

e deviceentryand its parameters corresponds to the device entry in the
/ dev/i o- di spl ay directory.

e You should also configurieo- medi a for optimal video performance. For more
information, see “Configuringo- nmedi a for optimal video performance” in the
MME Configuration Guide

e Forinformation about playing video, see the chapter Playing and Managing Video
and DVDs in this guide.

Adding modifiers to a video output device URL

February 13, 2009

The URL to the video output device may contain optional modifiers after the question
mark (“?"), each modifier separated by an ampersand (“&”), to set default values and
behaviors on the device. Supported maodifiers are listed below:

| ayer Specify the GF layer.
i ndex Specify the GF display index.

nsurfs Specify the number of GF surfaces.
To specify the destination rectangle use:

dst x Set the destinatior coordinate.
dsty Set the destinatiop coordinate.
dstw Set the destination width, in pixels.

dsth Set the destination height, in pixels.
To specify the aspect ratio of the pixels on the physical display use:

aspn The aspect ratio numerator.

aspd The aspect ratio denominator.

To set the color control on the output use:

sat Specify the color saturation, in direct GF units.
bri ght Specify the brightness, in direct GF units.
cont rast Specify the contrast, in direct GF units.

After playback has started, you can use tfv@e video set properties()function to
adjust playback parameters.

Chapter 1 e Control Contexts, Zones and Output Devices 9

Runtime control of zones and output devices 0 2009, QNX Software Systems GmbH & Co. KG.

Example: Defining a video output device

The example below shows how to define in thee database schema, an audio output

device and a video output device.

I NSERT | NTO out put devi ces(type, permanent, nane, devicepath)
VALUES(1, 1, ’'rearoutputaudio’, ’'snd:/dev/snd/ pcnC0D3p’);

I NSERT | NTO out put devi ces(type, permanent, nane, devicepath)

VALUES(2, 1, ’'rearoutputvideo’,
' gf : 8086, 2772, 0?aspn=72&aspd=77&bri ght =- 20&sat =- 10’) ;

Runtime control of zones and output devices

This section describes how to manage zones and output devices at runtime.

Adding and removing zones and output devices

You must set a zone for the control context where you will play media in order to
output the playback to an output device. If a zone is no longer required, you can
remove it.

Adding zones to a control context
To create and use a zone, use the following functions:

e To create a zone, caihme zone create()with the MME connection handle, and
the name you want to give the zone.

e To set the output zone for the control context, cathe play_set zone()

e To find out which output zone is set for your control context, call
mme play_get zone()

Removing a zone

To remove a zone that is no longer required, simply watie zone delete()
specifying the ID of the zone you want to remove.

Attaching and detaching output devices

You should also attach output devices to zones, so that the control context will use
these devices for playback. To attach a new output device to a zone, use

mme play_attach output() to detach an output device from a zone, use

mme play_detach output()

Making output devices “permanent”

You may wish to mark some output devices, such as built-in car speakers, as
permanent, and others, such as removable headphones, as not permanent. To mark an
output device as permanently attached to an output zone, call

mme output set permanent(with the permanentargument set to 1 (one). To tell the

MME that a device is not permanent, call the same function, witlpgrenanent

argument set to 0 (zero).

10 Chapter 1 e Control Contexts, Zones and Output Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Runtime control of zones and output devices

Managing output attributes

To get output attributes, such as volume, balance, mute, or GF/video layer, call
mme play_get output attr(). To set these attributes, use
mme play_set output attr().

February 13, 2009 Chapter 1 e Control Contexts, Zones and Output Devices 11

Chapter 2
Starting Up and Connecting to the MME

In this chapter...

Connecting to the MME 15

Shutting down the MME 17

Using the MME notification interface 18
MME and QDBsl og codes 21

February 13, 2009 Chapter 2 o Starting Up and Connecting to the MME 13

00 2009, QNX Software Systems GmbH & Co. KG. Connecting to the MME

The information and instructions in this chapter assume that you have installed the
MME, and that you have a target system with the MME configured and running. On
this target system you need, as a minimum:

qdb, with the base MME databases createnfg_t enp, nme, andusb).
e io-nedia-generic
e io-fs-nedi aand its modules

i 0- audi o and the correct drivers

e ntd
e Me

For more information about starting the MME, see the chapter MME Quickstart Guide
in Introduction to the MME

In everyday discussions of electronic media, the terms “file” and “track” are often
used interchangeably. In this document, “file” refers to all non-media files (the MME
configuration file, for instance) and to media files that are being read or otherwise
manipulated for a purpose other than playing them. The term “track” refers to media
files that are being played or read and otherwise accessed or manipulated for playing.
For example, the MME synchronizes folders andfitesinside them, but it reads the
tracksfrom a playlist and places them in a track session.

Connecting to the MME

February 13, 2009

The MME is designed to make communications with client applications both simple to
implement and efficient in its execution. To communicate and work with the MME, a
client application needs only to connect to the MME and register for the types of
events it requires for that connection.

The figure below illustrates the flow of activities from first connection to the MME to
disconnection.

Register

- for events
Connection

handle

Playback,
synchronizations,
copying and ripping,
etc.

Client application workflow with MME from connection to disconnection

Chapter 2 o Starting Up and Connecting to the MME 15

Connecting to the MME 0 2009, QNX Software Systems GmbH & Co. KG.

Y

You may also want to set the preferred language for media output. For more
information, see “Setting the preferred playback language” in the chapter Configuring
Internationalization of th&AME Configuration Guide

e Forinformation about control contexts and how to define them, see “Control
Contexts” in the chapter Control Contexts, Zones and Output Devices.

e Forinformation about detecting mediastore states at startup, see “Understanding
mediastore states at startup” in the chapter Working with Mediastores.

The MME connection handle

Safety

Each client application connected to the MME has its own unique connection handle.
The connection handle information is stored in the opaque structurehd! _t .

Valid connection handles are createdrbyne connect() The MME fills in all needed
information to create the connection handle; all calls to MME functions require a valid
connection handle.

The functionmme disconnect(yeleases connection handles. Function calls made
with a connection handle after it has been released will cause an error.

All MME functions are thread-safe. The client application can create multiple
connections, and the MME handles thread safety for all thredds each thread uses
a different connection handle

However, if you use the same connection handle for more than one thread in your
client application, you must use mutexes, semaphores, or some other method to
maintain thread safety.

About connections, validation and blocking

The MME allows you to set a timeout period for blocking functions. If you set a
timeout period, when the timeout period expires, the function returns, unblocking the
client application. To enable the MME’s unblocking capabilies, you need to set the
<Unbl ock> configuration element attribute to ue. For more information, see
“Enabling the unblock capability” in the tfdME Configuration Guideand

mme set api_timeout()andmme get api_timeout remaining()in the chapter MME
API.

For information about setting the MME’s behavior when making a connection
(synchronous or asynchronous, and blocking or non-blockinginsee connect()

For blocking and validation information for specific functions, see the descriptions of
the functions in theMME API Library Reference

16 Chapter 2 e Starting Up and Connecting to the MME February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Shutting down the MME

Making the connection

Before it can start using the MME API, your client application must:
e useqdb connect()to connect to the MME database
e usemme connect()to connect to at least one MME control context

For more information about QDB, see td®B Developer’s Guide

The functionmme _connect(requires:

e a control context device path for your connection (which maps directly to a device
path)

e settings for thdlagsvariable

For more information, semme connect()in the MME API Reference

Disconnecting from the MME

Y

When the client application has finished all the work it needs to do on an MME
connection, it should disconnect from the MME and the QDB. To disconnect from the
MME and the QDB, call the functionsime disconnect(andgdb_disconnect(with

the appropriate connection handles.

The sample below shows how a client application disconnects from the MME and the
QDB:

/1 disconnect fromthe servers.
mre_di sconnect (nme);
qdb_di sconnect (qdb);

Disconnecting from the MME doesn’t shut down the MME. It simply disconnects the
client application from the device path to which it was connected in a control context.

Shutting down the MME

February 13, 2009

To shut down the MME:

1 Call mme shutdown(}o prepare the MME for shutdown.
2 Call mme disconnect(}o disconnect from the MME.

3 Kill the nmmre process, or shut down the system.

A call to mme shutdown()

e stops and disables:

- playback on all control contexts
- synchronizations on all control contexts
- any other MME operations that write to the MME database

Chapter 2 o Starting Up and Connecting to the MME 17

Using the MME notification interface 01 2009, QNX Software Systems GmbH & Co. KG.

Y

e delivers to all control contexts, the eveMME_EVENT_SHUTDOWNwhen the
MME begins shutting down threads in the background, and
MME_EVENT_SHUTDOWN_COMPLETEDwhen all threads have shut down

Because the MME shuts down threads in the background, the client application may
receive events from other operations after it recei®®_EVENT_SHUTDOWNand
before it receiveMME_EVENT_SHUTDOWN COMPLETED

After calling mme shutdown()you can:
1 Call mme disconnect(}o disconnect the client application from the MME.
2 Shut down the system by, for instance, turning off the power.

A call to mme shutdown()disables the MME. The MME must be killed and restarted
before a client application can use it again.

If you want to shut down the MME without turning off the system, after calling
mme_shutdown()your client application needs to kill the MME process.

Before callingmme shutdown() make sure that your client application completes
necessary operations and, if necessary, informs the users that it is shutting down.

Using the MME notification interface

The MME uses events to communicate with client applications. Client applications
should be designed to use these events to trigger processes, from responding to
end-user input to handling errors.

In order to receive events from the MME, the client application must:
e register for events, specifying the classes of events it wants to receive

e request the events at the appropriate times

Registering for events

To receive events after connecting to the MME, a client application must use
mme register for_events()o register for events, specifying the class or classes of
events it wants to receive.

The client application must register after each connection. This feature allows the
client application to register different connections for different classes of events. For
example, a connection used to handle synchronizations can register for
synchronization events, but ignore playback events.

Each event class has a differamtgevent . When it has registered for an event class,
the client application has told the MME whiel gevent s it wants to receive. When
it has a relevant event, the MME will:

18 Chapter 2 e Starting Up and Connecting to the MME February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Using the MME natification interface

February 13, 2009

e place itin its event queue
e send thesi gevent automatically to the client application.

For information about , ses gevent in theNeutrino Library Reference

The client application can then decide from thegevent if it needs to see the
associated event.

The code snippet below provides an example of how to register for events in a Photon
environment. It shows the steps required to set up the client application and the MME
so that the MME delivers playback event$ME_EVENT_CLASS PLAY) to the client
application. These steps are:

e creating a pulse

e attaching the client application’s input handler functiog_input_handler()to the
pulse

e filling the structuremme_event with the relevant event data

e instructing the MME to place the event data for each playback event in its event
queue

The client application now needs only to calime get event()to retrieve playback
events with their data.

#i ncl ude <nme/ nme. h>
#i ncl ude <qdb/ qdb. h>

/1 Set up the MVE input handler.

if(0 ==(pulse = Pt AppCreatePul se(NULL, -1))) {
perror("PtAppCreatePul se()");
exit(EXI T_FAILURE);

}

if(NULL == Pt AppAddl nput (NULL, pul se, ny_input_handler, NULL)) {
perror("PtAppAddl nput()");
exit(EXIT_FAILURE);

}

Pt Pul seAr m(NULL, pul se, &me_event);

/1l Let the mre know that we need events for this class.
if(-1 == me_register_for_events(
ne, MVE_EVENT_CLASS PLAY, &me_event)) {
perror("mre_register_for_events()");
exit(EXIT_FAILURE);
}

The code snippet below shows how the MME’s command-linertoek! i registers
for events.

/'l Connect to the mme for the event thread
mre_ev_hdl = mme_connect (control cont extdevi ce, O SYNC);
if (me_ev_hdl == NULL) {

Chapter 2 o Starting Up and Connecting to the MME 19

Using the MME notification interface 01 2009, QNX Software Systems GmbH & Co. KG.

fprintf(stderr,
"Coul d not connect to %\n", control contextdevice);
exit (EXI T_FAI LURE) ;
}

/1 W need a channel to receive the pulse notification on.
chid = Channel Create(0);

/1 And we need a connection to that channel for the pul se
/1 to be delivered on.
coid = ConnectAttach(0, O, chid, _NTO SIDE _CHANNEL, O0);

/1 fill in the event structure for a pul se
SI GEV_PULSE_| NI T(&event, coid,
SI GEV_PULSE_PRI O_| NHERI T, MY_PULSE_CCDE, 0);

/1 Setup the tiner; we want first event right away.
timer_create(CLOCK _REALTI ME, &event, &tiner_id);
itime.it_value.tv_sec = 0;
itinme.it_value.tv_nsec = 0;
itime.it_interval.tv_sec = 0;
itime.it_interval.tv_nsec = O;
itime.it_interval.tv_sec = 0;
/'l Register for all events fromthe MVE
if (me_register_for_events(me_ev_hdl,
regi steredcl asses, &event) == -1) {
fprintf(stderr,

"Coul d not register for events of type ALL. errno = %\ n", errno);
finish(0);

MME event classes

The MME event classes are bit masks. You can combine them wiiRaoperator to
register for several events at once. The structume_event cl asses_t defines the
different MME event classes as bit masks. These classes are:

e MME_EVENT_CLASS PLAY — Playback events.

e MME_EVENT_CLASS SYNC— Synchronization events.

e MME_EVENT_CLASS COPY— Copying and ripping events.

e MME_EVENT_CLASS GENERAL— Events not specified in the other classes.
e MME_EVENT_CLASS ALL — All events.

To register foplaybackandsynchronizatiorevents calinme register for_events()as
follows:

mre_regi ster_for_events(hdl,
MVE_EVENT_CLASS PLAY | MVE_EVENT_CLASS SYNC,
event);

20 Chapter 2 e Starting Up and Connecting to the MME February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. MME and QDB sl og codes

Getting events

To see the events in the MME’s event queue, your client application needs to call
mme get_event() The example below shows part of a routine used by a client
application to get events from the MME:

for(;:) {
if(-1 == me_get_event(me, &event)) {
perror("mre_get_event()");

return Pt_CONTI NUE;
}

if(event.type == MVE_EVENT_NONE) {
br eak; /1 no nore events, exit the |oop.

}

For a complete list of events delivered by the MME, see the chapters on events in the
MME API Library Reference
Unregistering for events

To stop receiving a class of events, the client application must unregister for that event
class. To unregister for an event class, oathe register for_events(with the

event classset to the event class for which you want to stop receiving events, and the
argumeneventset to NULL.

If the client application has registered for several or all event classes, it can unregister
for any event class without affecting the registration for the other event classes. The
example below shows a registration to receive all event classes, and a registration to
stop receiving media copy and ripping events:

mre_regi ster_for_events(hdl, MVE_EVENT_CLASS ALL, &event);
/1 Do some work here.

mre_regi ster_for_events(hdl, MM EVENT_CLASS COPY, NULL);

MME and QDB sl og codes

The MME and QDB slog codes have permanent values, as follows:
e SLOGC QDB— 26

e SLOGC MME — 27

February 13, 2009 Chapter 2 o Starting Up and Connecting to the MME 21

Chapter 3
Working with the MME Database and SQL

In this chapter...

Time values in the MME database 25
Solutions for database deadlock issues25
Handling of corrupt database 26
Optimizing your SQL 27

February 13, 2009 Chapter 3 e Working with the MME Database and SQL 23

00 2009, QNX Software Systems GmbH & Co. KG. Solutions for database deadlock issues

Time values in the MME database

The MME’s time is a 64-bit, internally-derived value that is guaranteed to be

monotonically increasing, even across system restarts. This value is guaranteed on
systems with or without a Real-Time Clock, and on systems on which the real-time is

changed forward or backward.

This behavior permits time-based comparisons of entries in the database with other
database entries, such as, for example|abtseerandlast_syncfields in the
medi ast or es table to determine if a mediastore requires resynchronization.

The table below lists MME database table columns (fields) that use the MME’s
internally derived time. These fields can be compared to determine the relative
sequence of events, as in the example above.

Table Columns (Fields)

fol ders
l'ibrary

medi ast ores lastseerandlast _sync

Solutions for database deadlock issues

Database deadlock issues have been observed on some MME projects. The causes for
these issues have been identified, and the solutions are described below:

e Different database file attached orders
e Using the QDB client to verify attached order

e Separating deadlock issues from performance issues

Different database file attached orders

Different database file attached orders for QDB and an external SQLite client result in
different locking orders, which cause database deadlocks.

Solution

To prevent database deadlocks caused by different database file attached orders, ensure
that your projects lock databases in the same order as they are attached:

1 mre (master)
2 nme_t enp

3 nme_cust om
4

mre_library

February 13, 2009 Chapter 3 e Working with the MME Database and SQL 25

Handling of corrupt database 0 2009, QNX Software Systems GmbH & Co. KG.

If you don’t have amme_cust omtable, use this order:
1 mre (master)
2 nme_t enp

3 me_library

& CAUTION: Locking your database files in any other order causes database deadlocks.

Using a QDB client to verify attached order

Before attaching database files in an external external client, you can have the client
ask QDB the attached order for the files. Below is an example of how to ask QDB the
attached order of database files, and the result:

gdbc -d mme ' pragma dat abase |ist;

Rows: 5 Cols: 3

Nanmes: +seq+name+fil e+

00000: | O| main|/fs/tnpfs/mre. db|

00001: |1|tenp]|]|

00002: | 2| nme_tenp|/fs/tnpfs/ mre_tenp|

00003: | 3| nme_custon] /fs/tnpfs/ nre_custom db
00004: |[4| me_library|/fs/tnpfs/me_Ilibrary.db

Q If a file doesn't have a filename (row 1), then don't attach it.

Separating deadlock issues from performance issues

During the development phase of your project you should configure your systems to
ensure that you are able to correctly separate performance problems from deadlock
problems, and understand and solve each problem accordingly:

e Run your systems with infinite timeouts to ensure that a deadlock is not confused
with a performance issue, and is always correctly identified and addressed.

e Enable profiling for queries that take longer than a specified time to execute (for
example, 200 milliseconds). If a query takes longer than the specified amount of
time, log it as a performance warning, and address the performance issue.

You can change your system configuration when you prepare your system for the
production environment.

Handling of corrupt database

If an operation that uses SQLite, such as those performegibystatement(pr
gdb_vacuum() fails because of a corrupt database, the function now reEBADF

26 Chapter 3 ¢ Working with the MME Database and SQL February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Optimizing your SQL

and logs an error. Client applications can now checlei@sDF, and take appropriate
steps to correct the problem with their databases.

For information about checking for and correcting inconsistencies, see the information
provided with themme sync db_check()function in theMME API Library
Reference

Optimizing your SQL

This section provides a few tips on how to optimize your SQL when working with the
MME.

SQL is very flexible and can perform the same job in many different ways. Not all
SQL statements are equal, however, and it is important to optimize your client
application’s requests to the MME database. SQLite is fast, but it can take time to
complete an operation if the query statement is not optimized.

For an overview of how to optimize SQL statements for SQLite, see “SQLite
Optimizer Overview” on the SQLite web sitéwv. sql i t e. or g.

A note about SQL statements

The QDB @db) resource manager is a resource manager interface on top of the

SQLite database engine. Through the QDB, the MME uses SQLite to query and write
to its databases. This section offers recommendations for composing queries and other
SQL statements for the MME.

SQL statements amot case sensitive. For example, the three queries below are
equivalent:

select fid,msid, filenane fromlibrary
SELECT fid, nsid,filename fromlibrary

SELECT fid, nsid,filename FROM |ibrary

By convention, however, we use capitals for the SQL keywords to improve the
legibility of query statementsSELECT fid, nsid, fil enanme FROM | i brary.

Design for size and limit queries

An SQL database can become very large very quickly, with hundreds of thousands of
entries. The MME database is designed to scale well, but it's best to limit your queries
and to design these queries to avoid duplicating information in the database tables.

February 13, 2009 Chapter 3 e Working with the MME Database and SQL 27

Optimizing your SQL

[J 2009, QNX Software Systems GmbH & Co. KG.

Use Indexes

Indexes improve database performance. When a query is made against a table, if a
column doesn’t have an index, it requires a table scan; and if an unindexed column is
of type TEXT, SQL will perform a full table scan string comparing all rows with the
requested value.

Use JOINs carefully

Not recommended

Recommended

Joins are convenient, but they don’t scale well and are often much slower than
sub-selections for large tables, because the complexii@is is exponential, while
the complexity of sub-selections is linear. As you add more rows to the tables, the
query sub-selection will increasingly perform better than the query witti@ig.

The following examples produce the same results, but the statement with the
sub-select is much faster, especially with larger tables.

SELECT fid FROM i brary
I NNER JO N nedi astores on library.msid = nedi astores. nsi d
WHERE nedi astores. avai l able = 1;

SELECT fid FROM library
WHERE nsid | N (SELECT nsid FROM nedi ast ores WHERE avai | abl e=1);

If you join two small tables that will never be large, then usiniOéN is acceptable, as

it won't impact performance. However, the query with tt@N won’t scale well and

performance will cause performance to degrade if either one of the tables increases in

size.

Filtering out unavailable tracks

Media files on external devices, such as a PFS device, remain in the MME library after
the device has been removed from the system. The exception to this rule is if the
device and its files are pruned from the library to keep the MME database within its
configured size limits. For information about database pruning, see “Database
pruning” in theMME Configuration Guideln addition, files that were synchronized

but are later found to be unplayable remain in the library, though they are marked as
unplayable. For more information, see “Marking unplayable tracks” in the chapter
Playback Errors.

To avoid building track sessions with tracks that aren’t available, which could cause
gaps in playback, your client application should filter out tracks on unavailable
mediastores when it builds its track sessions. It should include éitiERE

avai | abl e=1 or WHERE act i ve=1 in its select statement. The example query
statement below selects all tracks in the playlist “Favorites” that are on available
mediastores:

SELECT fid FROM pl ayl i stdata WHERE
plid = (SELECT plid fromplaylists WHERE nane = ' Favorites’)
AND msid I N (SELECT nsid FROM nedi ast ores WHERE avai | abl e=1);

28 Chapter 3 ¢ Working with the MME Database and SQL February 13, 2009

Chapter 4
Working with Mediastores

In this chapter...

Detecting mediastores 31

Mapping mediastore filesystem paths to device locations$7
Handling external disk changers 38

Handling removed mediastores 39

Handling reloaded mediastores 39

“Manually” updating thd i brary table 39

February 13, 2009 Chapter 4 e Working with Mediastores 29

0 2009, QNX Software Systems GmbH & Co. KG. Detecting mediastores

This chapter describes how to detect and manage mediastores, their state changes, and
their removal from and insertion into the MME.

Detecting mediastores

The MME uses the Media Content Detector (MCD) utility to monitor and detect the
insertion and removal of mediastores, andgdhet s table to associate mediastores

with the devices that present them. To detect mediastores, your system must have the
MCD andthe slots table configured correctly. For more information, see “Mediastore
detection path configuration” in the the chapter Configuring Device Support of the
MME Configuration Guide

Mediastore states

Mediastores can have any one of the following states:
¢ Nonexistent — the MME has no database entry for the mediastore.

e Unavailable — the MME has a database entry for the mediastore, but the
mediastore isn’t in the system in which the MME is running.

e Available — the MME has a database entry for the mediastore, and the mediastore
is in the system in which the MME is running. That is, the MME knows the
location of the mediastore, but the mediastore can’t be synchronized, and tracks on
the mediastore can’t be ripped or played. This state is generally possible only for
disk-based mediastores in multidisk changers.

e Active — the usable state of a mediastore. The MME has a database entry for the
mediastore, the mediastore can be synchronized, and tracks on the mediastore can
be ripped or played.

The initial state of all mediastores is “nonexistent”. The MME checks for the insertion
and removal of mediastores, including hard drives, CDs and DVDs, and USB memory
sticks, and delivers the eveMME_EVENT_MS_STATECHANGEwhen a mediastore

state changes.

When the state of a mediastore changes from another state to “nonexistent”, the MME
prunes the entries for that mediastore from its databvagardlessof the MME’s
pruning settings.

The default MME configuration is to automatically detect new mediastores. When it
detects a new mediastore, the MME:

e checks if it has seen the mediastore before, by attempting to match a unique
mediastore identifier with an entry in thaentifier column of the MME
medi ast or es table

e updates theredi ast or es table and sets

- theavailablefield for the mediastore to indicate that the mediastore is available

February 13, 2009 Chapter 4 e Working with Mediastores 31

Detecting mediastores 0 2009, QNX Software Systems GmbH & Co. KG.

- if the mediastore is active, tleetivefield to indicate that the mediastore is active
e delivers the evemIME_EVENT_MS_STATECHANGE

Understanding mediastore states at startup

In order to start the MME correctly, you should keep in mind the following:

e The MME database must be accessible to the MME before it starts. This
requirement means that the QDB must be running before the MME is started. Note,
however, that with the QDB running, the MME databases can be read by other
entities, including client applications that use the MME.

e The MME can't use a mediastore that it hasn’t been told about by the path
monitoring system.

e When the MME first starts, it has no way of knowing:

- what mediastores are present

- what changes were made to mediastores or to its database while it was not
running — or the significance of those changes

e The mediastore information in the MME database may vary, depending on how
your system is configured, and how it shutdown; and you should handle the system
startup accordingly:

- If your system is configured to always start from a clean (empty) database at
each startup, you only need to tell the MME to begin device detection.

- If your system did not perform a clean shut down (for example, a power failure
or a battery removal stopped the system), you need to revert to a clean database,
and proceed from that point.

- If your system is configured to save the database at shutdown and restore it at
startup (the recommended configuration), the state of mediastores indicated by
the MME database at startuptlee state of the mediastores when the MME shut
down If mediastores were removed, inserted or otherwise changed between
shutdown and startup, these changes are not indicated in the database, so you
need to tell the MME to begin device detection, thveait for it to complete its
database clean up before attempting to access the datalSa&se"System
startup operations” below for details.

For more information about mediastore states, see “Detecting mediastores” in the
chapter Working with Mediastores.

System startup operations

The following describes the operation of the system at staasgyminghat
automatic device detection is disabled.

1 The QDB is started.

e The database may be read.

32 Chapter 4 ¢ Working with Mediastores February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Detecting mediastores

Y

e Thenedi ast or es table reflects the state of mediastores at the previous
shutdown, assuming that the table has been properly restored and no other
entity is writing to it.

2 The MME is started. Since device detection is disabledpttg ast or es table
doesn’t change state, and the client application has a second opportunity to
determine the startup (in fact, the previous shutdown) state of the mediastores.

3 The client application instructs the MME to begin device detection. The MME
goes through theedi ast or es table, and sets argct i ve oravai | abl e
entries tounavai | abl e. For each changed entry, the MME delivers an
MME_EVENT_MS_STATECHANGEevent. During this time, theedi ast or es
table should not be read by other entities, as it may be changing.

4 The MME delivers aMME_EVENT_MS_DETECTION_ENABLED event.
Delivery of this event indicates that the MME has completed its database clean
up. The client application may now read the database.

CAUTION: The client application should not read from the MME database until the
MME completes its database clean up and delivers the

MME_EVENT_MS DETECTION ENABLED event. Until this event is delivered, the
database reflects thpgeviousstate of mediastores, creating an inconsistency between
the information about the mediastores in the MME database and the actual state of the
mediastores. This inconsistency can cause errors.

5 The MME handles insertion requests. After the MME delivers an
MME_EVENT_MS_DETECTION _ENABLED event, it may process mediastore
insertion requests from the path monitoring system. Handling of these causes
the database to change: as the path monitoring system (normally the MCD)
detects the appearance of media stores, it tells the MME, and the MME
processes this new information and updatesy#d ast or es table as needed.

If the MME is configured forautomaticdevice detection, the MME executes Step 3
internally, and the states for mediastores in the database state may change between
Step 2 and Step 4 above.

Determining mediastore state changes after shut down

February 13, 2009

In some situations, a client application may want to determine if a mediastore
remained in the system (wastremoved) while the system was shut down. This
information depends on information to which the MME does not have access. For
example, to tell the client application that a CD remained in the system, the MME
would need to know if CDs can be removed and inserted while the system power is off.

The mediastore information from the MME database that is directly available to the
client application is the following:

e The mediastore state at the previous shutdown. The client application may read this
information from the MME databasater the QDB has started, armkfore

Chapter 4 e Working with Mediastores 33

Detecting mediastores 0 2009, QNX Software Systems GmbH & Co. KG.

- the MME is started, if automatic device detectioreisabled(the default)
- device detection is started, if automatic device detectiatisiabled

e Mediastore state changes at system startup.

These limitations mean that, in order to be able to distinguish between a mediastore
that was never removed from the system and a mediastore that was inserted just as the
system was starting up, the client application must be designed to use information that
it requests and maintains independently of the information the MME can provide. If,

for example, the client application is implemented in a system where CDs cannot be
ejected when the system is shut down, it may be able to assume — independently of
the information provided by the MME — that a CD that was present at shutdown is
present at startup.

Configuring how the MME handles mediastores at startup

Thedelete at_startfield in thesl ot s table allows you to manage how the MME
processes mediastores markecaisi ve at startup.

The default MME behavior at startup is to change the statebf ve mediastores to
unavai | abl e. However, when theelete at_start field for a slot is set to a hon-zero
value, at startup the MME marks any mediastore found in the slot for deletion, and
sets its state taon- exi st ant . This configuration causes the MME to treat all
mediastores in a slot as new mediastores; that is, as mediastores that the MME has
never seen, and to perform synchronizations accordingly.
CD detection and presentation

The stages of disk insertion and detection are:

Disk inserted into drive.

The disk spins up.

The MCD notices the path appearance for the CD.

1

2

3

4 The MCD signals the insertion to the MME.

5 The MME probes the disk to see how to handle it.
6

The MME creates a media store entry (or marks an existing entry of the disk as
active).

7 The MME attempts to synchronize its database with the contents of the disk.
Mixed-mode CDs

The MME uses the first entry in a CD'’s table of contents (TOC) to determine if the CD
is an audio or a data CD, and makes only one entry imthi ast or es table for the

CD. This behavior means that the MME presents a CD with both audio and data files
to the client application as either an audio CD or a data CD, based on the type of file in
its first TOC entry.

34 Chapter 4 ¢ Working with Mediastores February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Detecting mediastores

Recommended method for detecting mediastores

The recommended method for an client application to detect a mediastore state
change, such as an insertion or a removal, is to check for the
MME_EVENT_MS_ STATECHANGEevent, then check the new mediastore state:

e |Ifthe new state i® mme _ms_active you can assume that the mediastore has been
inserted.

e If the new state i®&_ mme_ms_unavailable you can assume that the mediastore has
been removed.

Note that a state af mme _ms_nonexistentan occur when a mediastore has been
removed from the MME database, for example, during a pruning operation. Client
applications should therefore also check for this state.

Manually requesting device and mediastore detection

AN

If you have configured the MME not to automatically detect devices and mediastores,
you must callimme start_device detection()to start device and mediastore detection.
The MME will check for any new devices that may have or be mediastores, and
updates itsredi ast or es table with the relevant information.

CAUTION: Between the time the MME starts up and mediastores are detected, the
MME can’t check the state of mediastores as defined in its database against the actual
state of mediastores connected to the system. Therefore, if you have configured your
MME to not automatically start device detection, always call

mme start_device detection()before attempting any tasks that access devices
(synchronization, playback, media copy and ripping, etc.).

Failure to callmme start device detection()before attempting these type of tasks
will produce unexpected results that may compromise the integrity of your system.

Mediastore identifiers

When the MME detects that a mediastore has been inserted into the system, it checks
the mediastore for a unique identifier that it can match against an ielefmtifier

column of the MMEnedi ast or es table. If the unique identifier for a mediastore
matches an entry in this table, the MME considers that it has seen the mediastore
before and proceeds accordingly; it may, for example, be able to optimize the
synchronization of the mediastore if it ican confirm that some of the information it has
about the mediastore is still accurate.

Identifiers for hard drive filesystems, USB memory sticks, and data CDs and DVDs

February 13, 2009

When a mediastore is inserted, if the MME has sufficient information to do so, it
identifies that mediastore as already known. When it detects the insertion of a hard
drive filesystem, USB memory stick, or data CD or DVD into the system, the MME
searches for the fileiPI nf 0. xm at the root of the mediastore. It then attempts to
extract theUUID from the file. If the extraction is successful, the MME stores this

Chapter 4 e Working with Mediastores 35

Detecting mediastores

[0 2009, QNX Software Systems GmbH & Co. KG.

UUID in theidentifier column of the MMEnedi ast or es table and uses it as a
unique identifier for the mediastore.

If the MME doesn't find the fileAwPI nf o. xm , or if it is unable to extract &UID
from the file, it creates an identifier from a hash of the volume name (if found) and
some file system information.

Note that in the absence ofdUID:

e Data CDs or DVDs that have changed their content since the last time they were
inserted in the system are recognized as new mediastores.

e Data CDs or DVDs with the same volume name are recognized as different if the
size of their contents is different.

e USB device serial numbers can't be used, so there is a significant chance that these
devices can't be uniquely identified: two USB devices of the same size with no
volume name aren’t distinguishable.

Identifying USB memory sticks

Support for multiple

Many USB memory sticks don't have at least one ##®I nf 0. xn file, a volume
name or a unique serial number. Without any of these unique identifiers, the MME has
no mechanism for distinguishing between two USB sticks of the same size.

To solve the problem in a development environment, you can either assign a unique
volume name to each USB stick, or synchronize each stick with Windows Media
Player, which automatically creates\&Pi nf o. xrd file. In a production

environment, you can have the HMI write a volume name or other unique identifier to
USB sticks the first time they are inserted.

instances of a mediastore

The MME supports up to 10 instances of the same mediastore. When it detects a
mediastore, the MME checks if the an instance of that mediastore is already present in
its database. If the new mediastore is a duplicate, the MME:

1 Doesn’t change any information for any instances of the mediastore already
present in the MME database.

2 Creates an entry for the new (duplicate) mediastore.

3 Appends “-i”, wheren is the instance number, to the string in the mediastore’s
identifier column, and (if this column is not empty) to the string in the
driver_identifier column.

Thus, for example, if two duplicates of a mediastore witsid 123 are entered in the
system, the MMEredi ast or es will have three entries for this mediastore, as
follows:

36 Chapter 4 ¢ Working with Mediastores February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Mapping mediastore filesystem paths to device locations

msid identifier driver_identifier

123 FAT12341234 6
123 FAT12341234-i1 6-il1
123 FAT12341234-i2 6-i2

Q e I|dentifiers can be from “-i1” to “-i9".

e The MME treats each mediastore instance as a separate, uniqgue mediastore.

e The MME prunes unused mediastore instances from its database, as required.

Mediastore and device capabilities

The MME uses theapabilitiesfield in thenedi ast or es table to store the
capabilities of a mediastore or a device, such as an iPod, that presents itself as a
mediastore. This field is a bit map defined by lhE_MSCAP_* constants.

To find out the capabilities supported by a mediastore or device, after receipt of an
MME_EVENT_MS_STATECHANGEevent indicating that the mediastore or device is
active check the value of theapabilitiesfield for that mediastore or device.

If, for example, a device manages its own:

e track sessions, the bit f(MME_MSCAP_DEVICE_TRACKSESSIONS
(0x00000080) will be set

e repeat and random modes, the bit ftME_MSCAP_DEVICE_REPEATRANDOM
(0x00000800) will be set

For more information about mediastore and device states, see “Mediastore states”
above.

Track session capabilities

To get details about the current track session capabilities, call
mme trksessionget info(). Note, however, that the information provided by this
function is valid only if it is retrievedafter playback has started on the external device.

Mapping mediastore filesystem paths to device locations

February 13, 2009

In order to be able to associate a filesystem path to the physical location of a
mediastore, your client application should map the filesystem paths of mediastores to
device paths, and these device paths to the physical locations of devices. The
mountpathfield of thenedi ast or es table is always the filesystem path of a
mediastore. To map the mountpaths in tieeli ast or es table to device paths and,
finally, to the physical locations of devices, your client application must know the
following:

Chapter 4 e Working with Mediastores 37

Handling external disk changers 00 2009, QNX Software Systems GmbH & Co. KG.

Y

e Wwhat physical devices are in the system (e.g. CD changer in the front seat and a CD
changer in the back seat)

e the device paths of the drivers used to handle these physical devices (e.g.
/ dev/ cd_f ront and/ dev/ cd_back)

e how filesystems of mediastores are mounted when they are found (e.g.
/fs/cd_front and/ fs/ cd_back)

With this information, your client application could map, for examplies/ cd_back
from themountpathfield in themedi ast or es table to the device patliev/ cd_back
and know that this mediastore is in the back seat CD changer.

If Qnet is running and the MME is handed the device path, the filesystem mountpath
found in the mediastores table will be prefixed/met / nodename

Associating devices and mediastores in the sl ot s table

Thesl ot s table is used to associate mediastores in the MME system with the devices
that provide them. As such, a slot is a representation of a device, such as a CD drive or
a USB stick. The MME must have an entry in stisot s table with the mountpath (or,

in some cases, the device path) of every device that it may encounterslfdihe

table doesn’t have an entry for the device, the MME will not recognize the device and
will not find the mediastores on that device.

Thesl ot s table is preloaded with default entires for an HDD, as well as for CD/DVD,
USB, PFS, UPnP, and iPod devices. You should review these entries and modify, add
or delete entries in the table to match your system. For instructions, see “Configuring
the slots table for supported devices” in the chap®E Configuration Guide

Handling external disk changers

The MME fills in thenamefield in thenedi ast or es table when the state of an

external CD changer is set &wai | abl e. This behavior allows the client application

to communicate the CD changer name to users as soon as the changer is detected and
available, even before it is active.

To trigger this new behavior, the client application must configuresthw s table
namefields corresponding to external CD disk changers to either empty strings or
NULL values.

For other mediastores, the MME sets ttemefield in thenedi ast or es table when
the mediastore state is setdot i ve.

38 Chapter 4 ¢ Working with Mediastores February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Handling removed mediastores

Handling removed mediastores

AN

When the MME detects that a mediastore has been removed from the system, it:

e sets theavailableandactivefields for the mediastore in theedi ast or es table to
0

e Delivers the eventIME_EVENT_MS_STATECHANGE

Note that theavailablefield set to0 indicates only that the mediastore is not available.
It does not provide information about the state of the mediastore synchronization.

CAUTION: If a mediastore is removed from the system while the MCD that monitors
it is not running, the MME willneverlearn that the mediastore has been removed.

Handling reloaded mediastores

If the mediastore was inserted in the system and synchronized at a previous time, the
content of thd i br ar y table will have the mediastore information. However, because
there can be no guarantee that a mediastore exactly matches the information in the
MME database, the MME must resynchronize the mediastore to either confirm that all
information is accurate, or add, remove, and change information as required.

During this resynchronization process, the MME uses any information available on the
mediastore that can confirm the accuracy of its database before all synchronization
work is complete. This strategy allows the MME to optimize performance by skipping
resynchronization of parts of the mediastore that are confirmed unchanged since the
last insertion and synchronization.

The default MME behavior is to automatically synchronize mediastores. Your client
application needs only to monitor the progress of the synchronization to know when it
can start playing media, displaying metadata, and using playlists.

“Manually” updating the | | brary table

February 13, 2009

The MME provides a functionnme lib_column set() that allows you to “manually”
set the values of some fields for mediastores inl fher ar y table.

The functionmme lib_column set()can only be used to update entries in the
columns listed below:

e accurate

last played

fullplay_count

playable

permanent

Chapter 4 e Working with Mediastores 39

“Manually” updating the | i br ar y table 01 2009, QNX Software Systems GmbH & Co. KG.

e copied fid

For more information, see tidME API Library Reference

40 Chapter 4 e Working with Mediastores February 13, 2009

Chapter 5
Synchronizing Media

In this chapter...

The synchronization process 43
Types of synchronization 49
Updated database tables 51

Working with synchronizations 51
Gracenote classical music support 55

February 13, 2009 Chapter 5 e Synchronizing Media 41

[2009, QNX Software Systems GmbH & Co. KG. The synchronization process

This chapter explains how to synchronize media on these mediastores with the MME
database.

Q This chapter describes the MME default behavior. For information about how to
configure the MME’s synchronization behavior, see the chapter Configuring Media
Synchronizations in thMIME Configuration Guide

For information specific to synchronizing iPods, see “Synchronizing iPods” in the
chapter Working with iPods.

The synchronization process

Mediastore synchronization is the process by which the MME examines mediastores
and updates its database with information about the media tracks on the stores and
with the metadata for these media. Information and metadata includes, but is not
limited to, media type and format (audio, video, etc.), track name and language, genre,
cover art, and so on. This information and metadata is essential for the MME and
client application to be able to find, organize and play media, and to display
meaningful information to the end user.

The MME can be configured to automatically synchronize mediastores on system
startup and on mediastore insertation, or to wait for requests to synchronize a
mediastore. The default MME configuration is to automatically synchronize all
mediastores except iPods. Automatic synchronization is always disabled for iPods; the
MME only synchronizes these devices when it is explicitly requested to do so.

Synchronizer selection

When it prepares to synchronize a mediastore, the MME selects the most appropriate
synchronizer for the mediastore. The selection criteria include ensuring that the MME
obtains the most accurate and complete metadata available for the files on the
mediastore. For example, for a CDDA:

e The MME checks if the CD device supports CD-Text, and if the Gracenote plug-in
is enabled.

e |f CD-Text or Gracenote support is available, the MME uses the most appropriate
synchronizer to get metadata during the metadata synchronization pass.

e If these synchronizers are not available, the MME uses its default synchronizer to
get the metadata.

Metadata synchronizer selection

The MME includes a tableret adat apl ugi ns, that lists the different metadata
synchronizers available to the MME. lts fields are:

metadatapluginid The metadata plugin ID.

February 13, 2009 Chapter 5 e Synchronizing Media 43

The synchronization process 0 2009, QNX Software Systems GmbH & Co, KG.

name The name of the metadata plugin.

Thenedi ast or es table implements the fielglet adat apl ugi ni dto identify the
metadata synchronizer used for the mediastore, and thereby identify the origin of the
metadata for the mediastore. If more than one metadata synchronizer is required for
the mediastore, theet adat apl ugi ni d field in thenedi ast or es table is setto 0
(zero).

For information about configuring ratings for metadata synchronizers, see “Metadata
synchronizer ratings” in th®IME Configuration Guidehapter Configuring Metadata
Support.

Multiple synchronization passes

For most mediastores, the MME uses a multiple synchronization passes process. This
multiple pass process reduces the delay time between the insertion of a mediastore and
readiness to play media by separating synchronization into separate passes, as follows:

file and folder discovery

metadata update

playlist compilation

external database syncrhonization (future implementation)

Monitoring synchronization progress

44

The client application can register to receive synchronization events and use these
events to monitor the progress of the MME synchronization activities. These events
tell the client application what level of information is ready for use:

MME_EVENT_MS_SYNCFIRSTFID
The MME has found the first playable track on the mediastore.

MME_EVENT_MS_UPDATE

An MME synchronization process has updated a database table: synchronization
is progressing normally.

MME_EVENT_MS_1PASSCOMPLETE

Basic file information: the media can be played.
MME_EVENT_MS_2PASSCOMPLETE

Metadata: artist name, genre, album art, etc. is ready for display to the end user.
MME_EVENT_MS_3PASSCOMPLETE

Playlists: playlists are ready for display and use.

MME_EVENT_MS_SYNCCOMPLETE
All synchronization passes for the mediastore are complete.

Chapter 5 e Synchronizing Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. The synchronization process

The synchronization pass process

Each synchronization pass proceeds as follows:
1 Start at the root node of a tree (in this case, the mediastore root directory).

2 Enumerate each object in the root node before examining the contents of any of
the objects.

3 Examine the first folder in the queue, following each branch to its end before
starting the next folder.

This process ensures that all directories that share a common parent node are
synchronized before directories deeper in the tree are examined. If you cancel a
synchronization in progress, some directories may be fully synchronized while others
may not have any of their contents synchronized.

5 7
2
6 8
1
3 10 9
4 11

Illustration of the order in which the MME synchronizes mediastores.

Tracking mediastore synchronization status

February 13, 2009

The MME maintains synchronization flags in its database to track the history of
synchronization status of mediastores and folders. The colsymeflagsin the

medi ast or es table is used to indicate which synchronization passes have been
completed on a particular mediastore. It consists of three-bit fields, where a set value
means the particular synchronization pass has been successfully completed:

e The least-significant bit indicates that the file synchronization pass has been
completed (001).

e The next significant bit indicates that pass the metadata synchronization pass has
been completed (010).

e The next significant bit indicates that the playlist synchronization pass has been
completed (100).

For example, a value of 0 from this field means that no synchronization has completed,
and a value of 5 (101) means that the file and playlist passes have been completed, but

Chapter 5 e Synchronizing Media 45

The synchronization process 0 2009, QNX Software Systems GmbH & Co, KG.

Y

that the metadata has not been completed. A value of 7 (111) indicates that all
synchronization passes have been completed.

These flags armot cleared if the device is made unavailable. When a disk is moved out
of the active slot while in a multi-disk changer, the disk is not made unavailable, only
inactive. Therefore this action does not clear any existing synchronization flag values.

For detailed information about what the MME does at each synchronization pass and a
complete list of synchronization events, see the section “Synchronization events” in
the chapter MME Events.

The MME sets the synchronization flags when the synchronization process has
finished inserting or updating the immediate contents of a folder. This behavior means
that the client application can monitor the synchronization flags knowing that once the
flag is set the contents for a mediastore folder in the MME database will not change.

Nonblocking synchronization function calls

Synchronization function calls are all nonblocking; they leave the client application
free to start media playback or perform other tasks.

This design means that the client application does not need to wait for synchronization
to complete before it begins playing media for the end user. It can check for
completion of the first synchronization pass and begin playing media while the MME
synchronization process is updating its database with metadata and creating playlists.

Pending synchronizations

If the MME receives a request to synchronize a mediastore but it does not have a
thread available to perform the synchronization, it places the request in its
“synchronization pending” queue until a thread becomes available.

Queued synchronizations can be canceled just like active synchronizations, by calling
mme sync cancel()

Optimization of synchronization for starting playback on slow devices

To optimize system performance when starting playback on slow devices, the MME
performs a foreground synchronization merge as soon as it has a filielynarked

as a “firstfid” (first playable) file. This action reduces the time required to start
playback on slow devices.

Ignoring specified file types

You can configure the MME synchronization process to:
e ignore certain file types, or files with specific strings in their names

e synchronize only specified file types

46 Chapter 5 e Synchronizing Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. The synchronization process

For efficient synchronization, you should configure your MME to skip files that begin
with “.”, and to synchronize only specified file types. For more information, see the
chapter Configuring Media Synchronizations in MBIE Configuration Guide

Q The MME automatically always skips the fileqcurrent directory) and. (parent
directory) because they would cause recursion.

Database clean up during synchronization

When it is completing synchronizations of a mediastore, the MME may attempt to
cleanup unused references to metadata if:

e the mediastore being synchronized is prunable from the database, and
e the current synchronization is not the first synchronization of the mediastore
The cleanup proceeds as follows:

1 As the MME synchronizes the mediastore, it deletes from its database entries
for files that are no longer on the mediastore.

2 When it has completed its last synchronization pass, the MME knows that it no
longer requires metadata for these deleted entries and that it can delete
references to their metadata.

3 The MME performs the cleanup, deleting unused references to metadata, after it
delivers theMME_EVENT_MS_*PASSCOMPLETEevent for the last requested
synchronization pass.

The cleanup may:

e Take up to several seconds, depending on the size of the MME database, causing a
corresponding delay between delivery of MBIE_ EVENT_MS_*PASSCOMPLETE
event and delivery of theIME_EVENT_MS_SYNCCOMPLETEevent.

e Cause the QDB to consume a large portion of CPU resources for the duration of the
operation.

Q To prevent a track session “leak” — an accumulation of useless track sessions in the
t r ksessi ons table — when a mediastore is pruned from your database, you should
also delete from your database all track sessions that use tracks on that mediastore.
For information about how to delete track sessions, see “Deleting track sessions” in
the chapter Playing Media.

Folder synchronization

The MME can be configured to deliver events when it starts and completes a folder
synchronization. This capability may be used in association with prioritized folder
synchronization, or as an alternative to polling a foldsyacedcolumn to monitor the

February 13, 2009 Chapter 5 e Synchronizing Media 47

The synchronization process 0 2009, QNX Software Systems GmbH & Co, KG.

progress of its synchronization. See the chapterConfiguring Media Synchronizations
in the MME Configuration Guiddor information about configuring the MME to
deliver folder synchronization events.

Folder event sequence
The order of delivery of folder synchronization events for a specific folder is:
1 MME_EVENT _MS SYNC FOLDER STARTED
2 MME_EVENT MS SYNC FOLDER COMPLETE

3 MME_EVENT_MS_SYNC FOLDER CONTENTS COMPLETE if recursive
synchronization of the folder is requested

The MME delivers theME_EVENT_MS_SYNC_FOLDER STARTEDevent
synchronously when it starts synchronization of a folder. At the same time, the MME
gueues the two other folder synchronization events for delivery, so that database
changes associated with these two events are completed before the events are
delivered.

This behavior means that it is normal for the client application to see
MME_EVENT_MS SYNC FOLDER STARTED events for child folders before it sees
theMME_EVENT_MS_SYNC _FOLDER COMPLETEevent from the parent folder.

Because the eveni8ME_EVENT_MS_SYNC_FOLDER COMPLETEand
MME_EVENT_MS_SYNC_FOLDER CONTENTS COMPLETEare queued, they
consume one slot in the synchronization merge buffer space, if this space is used.

Using me_f ol der _sync_dat a_t information

All folder synchronization events use the structane_f ol der _sync_dat a_t to
deliver information, but all synchronization events do not use all members of this
structure. The different folder synchronization events deliver data in

me_f ol der _sync_dat a_t as follows:

MME_EVENT_MS_SYNC_FOLDER STARTED

File pass:num files=0; num folders=0.
Metadata passium files=0; num folders=0.

MME_EVENT_MS_SYNC_FOLDER COMPLETE— folder new or changed.

File pass:num filess number of files in the foldemum folderssnumber of
child folders in the foldernum_playlistssnumber of playlists added to the
pl ayli st table.

Metadata passium filessnumber of files updateaium folders=0.

MME_EVENT_MS_SYNC_FOLDER_COMPLETE— folder not changed.

File pass:num files=0; num folders=0; num playlists=0.
Metadata passium filessnumber of files updatedium folders=0;
num_playlists=0.

48 Chapter 5 e Synchronizing Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Types of synchronization

MME_EVENT_MS_SYNC_FOLDER_CONTENTS COMPLETE

File pass:num files=0; num_ folderssnumber of child folders synchronized.
Metadata passium files=0; num folderssnumber of child folders
synchronized.

See also the documentation for the individual events.

Synchronizing playlists

Playlist synchronization converts playlist table entries into an ordered list of file IDs
and places these file IDs in tipe ay! i st dat a table.

Playlist synchronization includes the following behavior when finding a file in the
MME database to match a playlist file:

e Forevery entry in the playlist, the MME attempts to match the filename for that
entry in the playlist with a filename in its database.

e For playlists on MediaFS devices, the MME will search in its database for up to
100 matches of a filename in the playlist (same filename and same mediastore). If
the database contains more than 100 matches, any matches above 100 are ignored.

e When the MME has completed its search, it associates with the playlist the file in
the MME database that best matches the file in the playlist.

Q If a playlist file’s timestamp or file size changes from what it was during the file
synchronization pass, the synchronization process:

1 Removes the existing playlist file from tipeayl i st table.
2 Creates a new entry for the file in theayl i st table.

This new entry in thel ayl i st table isnot automatically synchronized. It requires a
playlist synchronization pass to produce its ordered list of file IDs in the
pl ayl i st dat a table.

Synchronizing a specific playlist

To synchronize a specific playlist (rather than synchronizing all playlists on a
mediastore) call the functiomme playlist_sync()

Types of synchronization

The MME supports the following kinds of synchronization:
e full, recursive synchronization
e directed synchronization

e file synchronization

February 13, 2009 Chapter 5 e Synchronizing Media 49

Types of synchronization [0 2009, QNX Software Systems GmbH & Co. KG.

Full, recursive synchronization

The default behavior for the MME is to automatically initiate full, recursive
synchronization on detection of a new mediastore. With full, recursive
synchronization, the MME scans all files on the mediastore and updates the MME
database with all relevant information and metadata. To initiate full, recursive
synchronization, calinme resync mediastore()

Directed synchronization

Y

Directed synchronization synchronizes only the folders and files on a specified path on
a mediastore. This capability is particularly useful if you want to synchronize part of a
large mediastore in order to start playing its contents, then synchronize the rest or
other parts of the mediastore in the background, or even at a later time.

To initiate directed synchronization, catime sync directed()

To improve the end user’s ability to browse through a mediastore, such as an iPod, the
MME makes available th®IME_SYNC_OPTION_CANCEL_CURRENTflag. If the

MME is performing a synchronization on a mediastore and the HMI needs to start a
new directed synchronization (because, for example, the user has started browsing
through a different folder), the HMI can use this flag when calling

mme _sync directed()to tell the MME to cancel the current synchronization and

gueue the new directed synchronization request for execution.

Directed synchronization is available only for mediastores with hierarchical directory
structures: HDDs, iPods, USB sticks, data CDs, etc. It is not available for mediastores,
such as music CDs, that have a single level directory structure.

Directed synchronizations and missing folders

If a directed synchronization is unable to find on a mediastore a folder that is in the
MME database, it deletes the folder and its contents from the MME database.

This behavior means that the client application can remove a folder from a mediastore,
then use directed synchronization to remove this folder from the MME database.

File synchronization

File synchronization allows the client application to have the MME synchronize only a
specified file. This capability is typically used when the client application knows that a
specific file change has occurred: a file has been deleted, added, moved, or renamed.

File synchronization can be performed only with certain media store types. For
example, this functionality it is not supported for use with iPods.

To initiate file synchronization, cathme sync file().

50 Chapter 5 o Synchronizing Media February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Updated database tables

Updated database tables

The MME database tables listed below are updated during the synchronization
process:

e File pass:

- folders
- library

nmedi ast ores
- playlists

e Metadata pass:

- folders
- library
- library_*

e Playlist pass:

- folders
- playlistdata
- playlists

Media information and metadata

The MMELI i br ar y table provides a single view of metadata for different metadata
formats (iTunes, Windows Media). If a metadata field is not supported in a file format,
that field is simply left empty.

If the MME synchronization processes cannot find a title in a file, the MME sets the
l'i brary title field to NULL. The client application can check a filgide field. If the
field is set toNULL, it knows that the file does not have a decodable title, and it can
handle the situation appropriately.

Custom information and metadata

The MME has a customizable table, where you can add your own information tied to
the MME library tables and access it as suits your needs. See the file
mre_cust om sqgl for a sample schema.

For detailed information about when during the synchronization process specific tables
are updated, see the section “Synchronization events” in the chapter MME Events.

Working with synchronizations

February 13, 2009

The default configuration for the MME is to automatically detect mediastores and to
automatically initiate their synchronization, updating the MMEbr ar y and other
tables with all relevant information and metadata. As a minimum, your client
application should register to receive synchronization events in order to monitor the
status and progress of synchronizations. You can also:

Chapter 5 e Synchronizing Media 51

Working with synchronizations [2009, QNX Software Systems GmbH & Co. KG.

e instruct the MME to synchronize a mediastore by calling
mme resync mediastore()

e find out if a mediastore has been synchronized, and if so, what passes have been
completed, by callingnme sync get msid_status()

e et the status of an synchronization in progress by caitinge sync get status()

e call mme sync cancel()with themsidset to the mediastore ID to cancel
synchronization of that mediastore, or with tisidset to0 to cancel all current
and pending synchronizations

For information about how to configure the MME’s synchronization options, see the
chapter Configuring Media Synchronizations in MME Configuration Guide

Determining if resynchronization is needed

You can compare thiastseerandlast_syncfields in thenedi ast or es table to
determine if you need to resynchronize a mediastore, and skip unnecessary
resynchronizations. Both fields use the MME’s internally derived time.

Thelastseerfield contains the time when the mediastore was last inserted into the
MME, and thelast_syncfield contains the time of the mediastore’s most recent
synchronization. If théastseerfield is greater than thiast_syncfield, the mediastore
may have changed since the last synchronization — it left the system and returned,
and could have been changed: it should be resynchronized.

Skipped synchronizations

The MME delivers the everMME_EVENT_SYNC_SKIPPEDto indicate that it found
a mediastore that could have been synchronized, but did not synchronize it for one of
the following reasons:

e automatic synchronization is disabled; the client application must specifically
request the synchronization

e automatic synchronization is enabled, but an internal event handler indicates that
synchronization should not be done

e the mediastore is identified as a mediastore type that should not be automatically
synchronized (e.g. an iPod)

Setting a priority folder

The client application can instruct the MME to synchronize a specified folder first.
You can use this feature to reduce the time required to make metadata available or start
playback of media requested by the end user.

This capability can be useful when your client application is displaying the current
view of synchronized directories during a synchronization process during startup, or
when a new mediastore is inserted. If a user selects a displayed directory before the

52 Chapter 5 e Synchronizing Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Working with synchronizations

MME has completed synchronization, your client application can set the selected
directory as a priority folder. The MME will synchronize this directory first and the
client application can update its display for the user as it receives
MME_EVENT_MS_UPDATE events.

Call mme setpriorityfolder()to tell the MME to pause any ongoing synchronizations
and synchronize the specified folder before resuming the rest of the synchronization.

Synchronization behavior with priority folders
The priority folder feature:
e supports one priority folder per media store being synchronized.
e silently ignores requests to synchronize:

- the folder currently being synchronized
- any folder below the current folder (because it will have already been
synchronized)

e isnotrecursive: the MME will synchronize the only the priority folder before
resuming its normal synchronization folder sequence

e if triggered during thdirst synchronization pass, completes all requested
synchronization passes on the priority folder before resuming its normal
synchronization folder sequence

e iftriggered during a metadata or playlist synchronization pass, it completes the
current synchronization pass only

¢ has no effect on a mediastore that is not currently being synchronized

If during a synchronization you set a priority folder, and you then set a new priority
folder before synchronization of the first priority folder has completed, in most, but
not all cases, the MME will:

1 Synchronize the most recently set priority folder.
2 Complete synchronization of the previously set priority folder.
3 Complete the general synchronization.

In the event that you attempt to set a new priority folder before the synchronization
process has checked for the first priority folder you requested, the MME will drop the
first priority folder request, and start synchronization with the newly requested priority
folder. The first priority folder requested will be synchronized with the other folders in
the general synchronization process.

February 13, 2009 Chapter 5 e Synchronizing Media 53

Working with synchronizations [2009, QNX Software Systems GmbH & Co. KG.

Removing file entries from the MME tables

You can instruct the MME to remove specific files from its database. To remove
information for a specific file from the MME database, calhe sync file() with the
new msidset to 0 andhew filenameset toNULL.

Cleaning up the library after removing files

AN

When the MME copies or rips afile, it places the filefid for the destination file in
the copied id field for the source file in thei br ary table. If at a later time the
destination file is deleted, thipied id field becomes invalid, because it points to a
file that is no longer in the MME library.

Checking the validity otopied id fields is potentially a very costly (time-consuming)
operation and is not performed by normal synchronizations. Howevenptiens
parameter for the synchronization functionsne sync directed()and

mme resync mediastore(jncludes a flag

(MME_SYNC_OPTION _CLR_INV_COPIED) that you can set to force the
synchronization to check the validity obpied id fields and set all invalid instances
of this field to zero (file not copied).

To clean up invaliccopied id fields, call eithemme sync directed()or

mme resync mediastore(with the mask for theptionsparameter set to
MME_SYNC_OPTION_CLR_INV_COPIED With this option set, the synchronization
operation will clean up invalid¢dopied id fields at the end of the file synchronization
pass, if the following are true:

e The mediastore being synchronized has been synchronized before.

e The synchronization request has asked for at least the file synchronization pass.

CAUTION: Calling eithermme sync directed()or mme resync mediastore(with
MME_SYNC_OPTION_CLR_INV_COPIEDset will clean up invaliccopied id fields

for the entire MME database, not just for the library entries that correspond to the
mediastore being synchronized. This operation can take a long time, and you should
use itonly after deleting from your database media files that were created by a copy or
ripping operation (using thexme mediacopy*() functions).

Repairing inconsistencies

If you encounter problems with a folder and its child items (files and subfolders) after
a synchronization, you may be able to msme sync db_check()to repair
inconsistencies between the MME database and mediastores with POSIX compliant
filesystems.

For more detailed information about checking for and correcting inconsistencies, see
the information provided with theame sync db_check()function in theMME API
Library Reference

54 Chapter 5 e Synchronizing Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Gracenote classical music support

Determining if a file should be shown

The MME’s file synchronization pass deletes from the MME database items no longer
found on their mediastoreeforeadding new items.

A client application may use theeencolumns in MME tables to determine if a file on

a mediastore can be shown to end-users. Only files marked as “seen” should be shown
(files with theirseencolumn set td, meaning that the file synchronization pass found
them on the mediastore).

Client applications should show end-users only files that have been found on a
mediastore by the file synchronization pass, using logic based on timestamps: if the
last_syncvalue of a i br ary table entry for a file is greater than tlastseertime of
thenmedi ast or es table entry for the mediastore that file is on, the file is on the
system (because the entry has gone through a first synchronization pass since the
mediastore was last placed in the system).

Gracenote classical music support

The MME supports Gracenote classical music metadata in its library. To enable
support for Gracenote classical music:

1 Enable Gracenote support in the configurationrfite. conf by setting the
<gr acenot e>element ta r ue.

2 Save the file and restart the MME.

For more information about how to make these changes, see “Gracenote support” in
the MME Configuration Guidehapter Configuring Metadata Support.

The fields described in the table below are used in the MME library to support
Gracenote classical music metadata. You should use the metadata in these fields
primarily for display purposes, because at this time many classical music entries in the
Gracenote database do not carry sufficiently precise metadata.

A single field in the MME! i br ar y table may hold more than one instance and type

of metadata, presented as comma separated strings. For example, wasistfield

inthe MMEI i br ar y table is built from Gracenote metadata, it can contain zero or
more soloists followed by zero or one conductor; if, for instance, the field contains two
names, it is not possible to deduce whether these two names are for two soloists or for
a single soloist and a conductor.

In the table below, mandatory metadata is shown in square brackeadptory
string], and optional metadata is shown in curly bradesptional string .

Field Content

artist 0 or morq soloist(s}, 0 or Lconductor

continued. ..

February 13, 2009 Chapter 5 e Synchronizing Media 55

Gracenote classical music support [2009, QNX Software Systems GmbH & Co. KG.

56

Field Content

composer composer short name

ensemble 0 or {ensemblk, 0 or 1{ choral ensemble

opus ppus titlg { In key} , { opus numbér, { catalogue numbér, { opus
nicknamé
title [movement numbgf movement tempo or text tifle

The remaining fields in the MME library hold their normal values.

For Gracenote classical music, the MME doesn't usestiieist id or conductor id
fields, because the Gracenote metadata doesn'’t provide unique identifiers for these
metadata.

Chapter 5 e Synchronizing Media February 13, 2009

Chapter 6
Playing Media

In this chapter...

About playing media with the MME 59
Working with track sessions 59

Monitoring and managing playback 67
Managing track sessions during playback 76

February 13, 2009 Chapter 6 o Playing Media 57

[2009, QNX Software Systems GmbH & Co. KG. About playing media with the MME

This chapter describes how to work with track sessions and play audio media on the
MME.

About playing media with the MME

The MME is designed to facilitate development of a user-friendly, efficient, and
versatile HMI for playing diverse media. A client application can instruct the MME to
begin playing media from a mediastore even before the mediastore has been
synchronized with the MME database. However, most client applications will start
synchronizing a mediastore before starting playback, so they can provide metadata,
such as song artist and genre, to their end users.

To play media through the MME, the client application requires:
e a connection to an MME control context

e one or more mediastores with, in most cases, at least the first synchronization pass
underway

e an appropriate output device connected to the control context

e an MME track session with playable tracks

e For more information about track sessions, see “Working with track sessions”
below.

e For more information about playlists, see the chapter Playlists.

e For specific information about playing videos, see the chapter Playing and
Managing Video and DVDs.

e iPods and Bluetooth devices require special consideration. For more information
about how to work with track sessions and playback with these devices, see the
chapters:

- “Working with iPods”
“Working with Bluetooth Devices”

Working with track sessions

February 13, 2009

A track sessioris the basic unit for playing media. It is created by an SQL query or an
explorer API function that generates a list of media tracks that can be played in a
control context. Each track in a track session is identified by its zero-based offset in
the list; this method permits duplicate file ID&d§) in a track session.

To play media, the client application must:

1 Create a track session by callingne newtrksession()This function delivers
the track session ID, which the client application can use to:

Chapter 6 o Playing Media 59

Working with track sessions 0] 2009, QNX Software Systems GmbH & Co. KG.

e set the track session as the current track session for the control context
e remove the track session from the MME database

2 For track sessions that use media from unsynchronized mediastores (file-based
track sessions), use the explorer API to discover and add track sto the track
session. For more information, see the chapter Unsynchronized Media in this
guide. This step is not needed for track sessions that use media from
synchronized mediastores (library-based track sessions), because for these types
of track sessions, the call tame newtrksession(populates the track session
with the tracks to be played.

3 Set the track session by callimgme settrksession()Once a track session is set,
the client application can begin playback or perform other operations, such as
fast-forwarding, setting the random or repeat mode, and so on

4 Start playback, by callinghme play(), or another function.

Q e The MME supports multiple track sessions; to determine which is the current track
session, calinme trksessionget info().

e Atrack session canotbe used by more than one control context. If you attempt to
set a track session already in use by another control comeng settrksession()
returns -1 and se&rrnoto EINVAL . To pass control of a track session to a new
control context, you must first release it from the current control context by calling
mme settrksession(jvith trksessionidset to O (zero).

For more information about the fields in the track session table, see Ks®ssi ons
table entry in the appendix: MME Database Schema Reference bfitie API
Library Reference

Types of track sessions

The MME supports two types of track sessions:
e library-based

e file-based

Library-based track sessions

A library-based track session is built with files from mediastores that have been
synchronized and, therefore, have entries inl thier ar y table in the MME database.
To create a library-based track session, simply proceed as with previous releases,
calling mme _newtrksession(jvith the modeargument set to
MME_PLAYMODE_LIBRARY (0).

The figure below illustrates the flow of activities from the creation of a track session to
the end of the track session, with a mediastore synchronization in the background.

60 Chapter 6 o Playing Media February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Working with track sessions

Play, skip, seek,
bookmark, etc.

Create
track
session

Set
track
session

Track session ((‘-

Synchronization

Files Metadata Playlists

Playing media with the MME.

File-based track sessions

A file-based track session is a track session built with files discovered through the the
MME'’s explorer API. Unlike tracks in a library-based track session, tracks in a
file-based track session can be from unsynchronized mediastores ant] tierefore,
have to have entries in thé br ar y table. For more information about the MME's
explorer API, see the chapter Unsynchronized Media in this guide.

Track sessions and playlists

The difference between a track session apthglist, is that a playlist is an arbitrary
collection of tracks that is created by a user, either by selecting individual songs or by
creating some selection criteria (such as all the songs by a particular artist),
represented as an SQL statement. The user can name a playlist and store it. A playlist
isn’t associated with a control context.

To play a playlist, the client application creates a track session from the playlist and
associates that track session with a control context. Set the track session with the
playlist to be the current track session by callmge settrksession()For more
information about playlists, see the chapter Playlists.

Creating track sessions

February 13, 2009

Your application should create either a library-based track session or a file-based track
session, depending the synchronization status of the mediastore with the media to be
played:

e for synchronized mediastores, create a library-based track session

e for unsynchronized mediastores, create a file-based track session

Chapter 6 o Playing Media 61

Working with track sessions 0] 2009, QNX Software Systems GmbH & Co. KG.

Y

MME track sessions support duplicate file IDisl$), because the MME references
tracks in track sessions by their offsets, not tffigis. To start playback with a specific
track offset in a track session, usene play_offset()

Creating library-based track sessions

AN

Library-based track sessions are used for playing found on synchronized mediastores,
and are the most commonly used type of track session.

To create a library-based new track session, oatle newtrksession(vith an SQL
statement to select the tracks you want to play andrtbdeargument set to
MME_PLAYMODE_LIBRARY (0). This function will use your query statement to:

e retrieve the tracks you want to play from the MME database

e create a track session in theksessi ons table

CAUTION: Always use MME functions to update the ksessi ons table.Never
write directly to this table. If you write directly to this table, you will make its data
unreliable.

Below are some examples of how your client application could create a library-based
track session and play it. To keep things simple, these examples assume that you have
already connected to the MME database and MME resource manager, and they don'’t
check return codes, which your application should do.

Playing all tracks in the MME library

We can start with the simplest case: create a track session to play all the tracks in the
library. This case has the following steps:

1 Create a track session that includes all audio tracks from all available
mediastores in the library.

2 Set this track session as the active track session in the current control context.
3 Play all tracks in the track session, in the alphabetical order of the titles.

Since we are not interested in metadata or playlists, we can start playing tracks from
any new mediastores after only the first synchronization pass has completed on these
stores.

mre_hdl _t * e

char *sql ;
ui nt 64_t trksessi oni d;
mre = nme_connect ("/dev/ me/ default”, 0); /1 Connect to MVE
sql = "SELECT library.fid AS fid FROM library "
" INNER JO N nedi astores ON nedi astores.nsid = library.nsid "

" WHERE nedi astores. avai | abl e=1 AND ftype=1 "
" ORDER BY title";

62 Chapter 6 o Playing Media February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Working with track sessions

/] create the new track session
mre_newt r ksessi on(mme, sql, MVE_PLAYMODE_LI BRARY, &trksessionid);

/1l set the new track session as the active track session
mre_settrksession(mme, trksessionid);

/1 start playing the track session,
/1 pass in a fid of 0 to start from the begi nning.
mre_pl ay(me, 0);

Note that:

e TheSELECTstatement you pass tome newtrkssessionghust not have a final
semicolon. The final semicolon must be omitted, because this statement is in fact a
sub-statementnme newtrksession(places this sub-statement into a larger
SELECT statement.

e The query requests only audio trackye=1).

e The result for the statement you passime newtrksession() musgticlude afid
column. In fact, the MME disregards any other column, so it is most efficient to
just selecfid.

For more information about the SQL queries used with the MME and QDB as well as
recommendations, see the chapter Working with the MME Database and SQL.

Excluding mediastore fids from track sessions

The MME adds did to thel i br ar y table for many types of mediastores, including
iPods and typ&ME_STORAGETYPE DEVB mediastores (which includes HDDs,
USB sticks, CDs and DVDs).

When composing queries for a track session, you should exdidglthat refer to
mediastores by addingWHERE clause to the query statement to select the file type
entry ftype you need. For example to select only entries wiigge=FTYPE_AUDIO:

SELECT fid, ftype, title FROMIibrary WHERE ftype=1 ORDER BY title;

Creating and modifying file-based track sessions

February 13, 2009

File-based track sessions are used for playing found on unsynchronized mediastores.

To create a file-based track session:

1 Use the MME’s explore API functionsi(me explore *(), etc.) to explore a
mediastore and retrieve information about tracks of interest on the mediastore.

2 Create a file-based track session by callimge newtrksession(vith the mode
argument set t®MME_PLAYMODE_FILE (1).

3 Set the track sesssion by callingne settrksession()

Chapter 6 o Playing Media 63

Working with track sessions 0] 2009, QNX Software Systems GmbH & Co. KG.

Y

4 Call one ofmme trksessionappend files() or mme trksessionset files() to
add files to the track session.

5 Proceed with playback and other functionality as with library-based track
sessions.

You don't need to use the explorer API before you create or set the track session. You

can use it at any time to discover tracks of interest, which you can then add to your
track session using one of the methods described below.

Modifying a file-based track session

You can explore mediastores and add tracks to your track session at any time after
creating the track session, or after you have started playback. You can change an
existing file-based track session by:

e callingmme trksessionappend files() to add newly explored files to the track
session

e callingmme trksessionset files()to replace all the tracks in the track session with
a new list of tracks

Setting track sessions

After you have created a track session, you must set it by cattimg_settrksession()
When you calimme settrksession(the MME takes a snapshot of the SQL statement
that represents the track session and stores it inthkeessi onvi ewtable. This

entry in thet r ksessi onvi ewtable changes only when a new track session is set, or
if you call the functionmme trksessionviewupdate()

Setting a track session before synchronization has completed

If a client application sets a track session before the MME has completed the first
synchronization pass of a mediastore (before it receives the event
MME_EVENT_MS_1PASSCOMPLETI the track session contains only a subset of the
data available on the mediastore. For example, if the client application calls

mme settrksession(pefore it receives the event
MME_EVENT_MS_1PASSCOMPLETEthe track session it sets will contain only those

tracks that were synchronized up to that point; the remaining tracks on the mediastore

will notbe included in the track session.

64 Chapter 6 o Playing Media February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Working with track sessions

AN

February 13, 2009

CAUTION: If the SQLSELECT statement used to create the track session uses
metadata, the client application has to wait for the event
MME_EVENT_MS_2PASSCOMPLETEbefore making its final update to the

trksessi onvi ewtable. For exampleSELECT fid FROM | i brary WHERE
artist_id=4 AND nsi d=3 uses metadata, so &llls for the track session will not

be found until after the second synchronization pass is complete. However, a query
such asSELECT fid FROM |i brary WHERE nsi d=3 ORDER BY fi | enanme uses
only information provided by the first synchronization pass, séidglfor the track
session are found by the first synchronization pass.

To enable playback as quickly as possible while ensuring that all requested tracks are
included in the track session, the client application should update the

t r ksessi onvi ewtable when it knows that the first syncrhonization pass has
completed, and, for large mediastores that can take a long time to synchronized fully,
periodically so that the track session does not run out of tracks. For example, with a
large mediastore with 10,000 files, the client application can do something like the
following, assuming that synchronization was started automatically, and that the SQL
SELECT statement does not use metadata:

1 Create the track sessiomne newtrksessiony)

2 MME_EVENT_MS_SYNCFIRSTFIDreceived: set the track session
(mme settrksession))with onefid.

3 Start playbackrfime play(), thenmme resume state().

4 Refresh the data in the ksessi onvi ewtable
(mme trksessionviewupdate().

5 If MME_EVENT_TRKSESSIONVIEW INVALID is received, loop until
MME_EVENT_TRKSESSIONVIEW UPDATE is received, indicating that the
MME has begun updating the ksessi onvi ewtable in the background.

6 At one minute intervals, update the data in thésessi onvi ewtable
(mme trksessionviewupdate() until the event
MME_EVENT_MS_1PASSCOMPLETHS received. When this event is received,
refresh the r ksessi onvi ewtable one last time.

Chapter 6 o Playing Media 65

Working with track sessions 0] 2009, QNX Software Systems GmbH & Co. KG.

Q .

Updates of the r ksessi onvi ewtable may take several seconds. It is best to keep
these to a minimum. Full playback capabilities are available while the MME
performs these updates.

The MME writes blocks of entries to the ksessi onvi ewtable in the

background. The size of this block is configurable. See “Setting the number of
tracks written to the trksessionview table” in tkBME Configuration GuideWhen

it finishes writing a block of entries, the MME delivers the event
MME_EVENT_TRKSESSIONVIEW UPDATE. When it finishes writing entries for

all available tracks (tracks that have been synchronized thus far), the MME delivers
the evenMME_EVENT_TRKSESSIONVIEW COMPLETE

Delivery of the evenMME_EVENT_TRKSESSIONVIEW COMPLETEmeans only
that there are no more entries for tracks to be written ta thesessi onvi ew
table. When synchronization completes its first pass, you will need to call
mme trksessionviewupdate()again to update ther ksessi onvi ewtable.

Metadata for all tracks in the track session is not available until synchronization has
completed its second pass and delivered the event
MME_EVENT_MS_2PASSCOMPLETE

Clearing track sessions

You can clear a track session by:

1
2

calling mme stop()to stop the track session
calling:

o for library-based track sessionsime settrksession(vith trksessionidset to
0 (zero)

o for file-based track sessionsime trksessionclear files()

Deleting track sessions

To prevent a track session “leak” — an accumulation of useless track sessions in the
t r ksessi ons table — you should delete track sessions fromtthiesessi ons table
in the following circumstances:

When you prune from the MME database the mediastore with the tracks used by
the track session.

When the number of track session in theksessi ons table increase above a
threshold that you define as optimal for your system and users.

When a track session is older than a period you define as optimal for your system
and users.

When requested to do so by the user.

66 Chapter 6 o Playing Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

To delete a track session:
1 Call mme stop()to stop playback on the track session.

2 Call mme settrksession(yvith the trksessionidset to O (zero) to clear the track
session.

3 Call mme rmtrksession(jo delete the track session.

Monitoring and managing playback

After you have started playing a track session, you need to monitor the progress of the
playback by checking the MME playback events. The example below shows a client
application displaying messages on receipt of some MME events:

switch (nmsg.single.type) {

case MVE_EVENT_NONE:
fprintf(stderr, "Received MVE_EVENT_NONE (%l)\n", MVE_EVENT_NONE);
br eak;

case MVE_EVENT_TI MVE:
fprintf(stderr, "Received MVE_EVENT_TIME (%d)\n", MVE_EVENT_TI ME);
br eak;

case MVE_EVENT_FI LECHANGE:
fprintf(stderr, "Received MVE_EVENT_FI LECHANGE (%d)\n", MVE_EVENT_FI LECHANGE) ;
br eak;

case MVE_EVENT_PLAYLI ST:
fprintf(stderr, "Received MVE_EVENT_PLAYLI ST (%l)\n", MVE_EVENT_PLAYLI ST);
br eak;

defaul t:
fprintf(stderr, "Unknown Event Received (%l)\n", nmnsg.single.type);
br eak;

Setting the playback notification interval

While the MME is playing a track session, it delivers the ewaRtE_ EVENT_TIME at
set intervals to notify the client application of playback progress.

The default interval between deliveriesMME_EVENT_TIME is 100 milliseconds,
but the MME allows you to change this interval by calling

mme set notification interval() with thetime set to the desired interval, in
milliseconds.

Note that:

e The interval between deliveries BIME_EVENT_TIME remains constant
regardless of the speed of the playback.

e The frequency of updates during playback depends upon the frequency of updates
from audio drivers and devices. Depending on the frequency of updates received
from audio drivers and devices, client applications may notice jitter in the reporting

February 13, 2009 Chapter 6 o Playing Media 67

Monitoring and managing playback 00 2009, QNX Software Systems GmbH & Co. KG.

of playback positions. For more detailed information, see
mme set notification interval() in the chapter MME API.

You should monitor for events indicating errors, changes in tracks (so you can display
the metadata display, for example), completion of playback, etc. For a complete list of
playback event types, see “Playback events” in the chapter MME Events.

You can also check on the progress of the playback by calling
mme play_get status() This function retrieves the status of playback, providing the
total play time of the track and the play time elapsed.

Knowing when playback has ended

Y

In most environments, users want to continue playback without interruption until they
explicitly request a change. Therefore, once the MME has started playback of a track
session, it continues playback until:
e the client application issues instructions to the MME

or:

e playback encounters an error that forces it to stop playback
or:

e playback reaches the end of the track sessions

In short, once playback of a track session has started, the client application doesn’t
need to do anything except monitor MME events, and pass information and metadata
to the end user, until it receives one of these events:

e MME_EVENT_FINISHED — playback has stopped because there are no more
tracks to play in the track session

e MME_EVENT_FINISHED WITH_ERROR— playback has stopped due to an error

Both these events indicate that playback has stopped, and that action by the client
application is required for playback to resume. No other events (not even
MME_PLAY_ERROR * events) require action from the client application for playback
to continue.

If the client application instructs the MME to stop playback (e.g. by calling
mme stop(), the MME doesot deliver anMME_EVENT_FINISHED_* event.

Using random and repeat modes

The MME can set the playback mode of a library-based track session to play through
the track session sequentially, repeat the track being played, repeat the entire track
session, or play through the track session in random order.

Track sessions inherit their repeat and random modes from the control context in
which they are created. Use the functionse getrepeat(andmme setrepeat()and
mme _getrandom(andmme setrandom(}o get and set these modes.

68 Chapter 6 o Playing Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

Q e For both library-based and file-based track sessions, a call to
mme trksessionviewupdate()refreshes the pseudo-random order of the tracks in
the track session.

e iPods maintain their own random and repeat modes, which the MME can detect
and set. For more information, see “Using random and repeat modes on iPods” in
the chapter Working with iPods.

Repeat and random modes with file-based track sessions

The explorer API and file-based track sessions are designed to allow the client
application to manage its track sessions, discovering tracks and adding new tracks to a
track session a few at time, as required by the end-user.

When new tracks are added to a track session in random mode, the new tracks are
appended in pseudo-random order to the end of the track session; they are not
integrated into the pseudo-random order for the entire track session. For example, if
five tracks are added to a track session with 20 tracks, the order for the tracks in
positions 0 to 19 remains the same, and the new tracks are appended in
pseudo-random order in postions 20 to 24.

When playing tracks in a file-based track session, to change the next track that will be
played without interrupting the track currently being played, the client application can
call mme trksessionset files() with the offsetparameter set to the required track.

Starting playback from a specific track

The MME lets you start playback with a specific track from a track session. The
method for starting playback from a specific track is different for library-based and
file-based track sessions.

The MME can play a track that isn’t in the current track session, as long as it has an
active track session in the current control context. For more information, see
mme _play().

Library-based track sessions

To start playback with a specific track in a library-based track session, instead of
passingnme play() a 0 (zero) for thdid argument, which starts playback with the

first track in the track session, pass it ficeof the track you want to play. The MME

will start playback with the track you specified, then continue playing the track session
as determined by the position of the track in the track session and the random and
repeat mode settings for the control context. For example:

e If repeat and random mode are off and the track you request is the second one in
the track session, the MME will start with that track and play all tracks to the end
of the track session. If the track you request is the last one in the track session, the

February 13, 2009 Chapter 6 o Playing Media 69

Monitoring and managing playback 00 2009, QNX Software Systems GmbH & Co. KG.

MME will play only that track, then stop playback, because it will have reached the
end of the track session.

¢ |If the repeat mode is turned on, the MME will start playing the requested track,
then continue playing, repeating either the track or the entire track session, as
determined by the repeat setting.

e If the random mode is turned on, the MME will start playing the requested track,
then continue playing tracks as listed in its pseudo-random list.

Q If the library-based track session contains more than one instance of the spitified
the MME starts playback at the first instance of tfiils

File-based track sessions

To start playback from a specific point in the file-based track session, use

mme play_offset() passing it the zero-based offset of the track where you want to
start playback. For example, to start playback with the 17th track in the track session
set themme play_offset()function’s offsetargument to 16.

Playing a track not in the current track session

The MME can play a track that isn’t in the current track session, as long as it has an
active track session in the current control context. For more information, see
mme _play().

Pausing playback

Your client application should pause playback only in situations when it expects to
resume playback or tear down the track session after a brief interval, such as when the
end user sends a “pause” button commawis (BUTTON_PAUSE) through the HMI.

For situations when you expect a change to the system, such as a shutdown or a change
to the mediastore being played, you should save the track session state and stop the
track session. For more information, see “Stopping and resuming playback” below.

To pause playback temporarily, calime play_set speed()with thespeedset to 0.

This action pauses playback until you caline play_set speed(jagain with the

speedset to something other than 0 (zero). Normal playback speed is 1000. For more
information about how to useme play_set speed() see “Using fast forward and
reverse” below.

Stopping and resuming playback

Your client application should save the track session state and stop the track session
when it expects or encounters a system change, such as a shutdown or a change to a
mediastore. Such situations include, but are not limited to, the following:

e a CD change in a system with a CD changer

e removal of a device, such as an iPod

70 Chapter 6 o Playing Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

Resuming playback

February 13, 2009

user-initiated change to another activity, such as switching from playback to the
radio tuner

a system shutdown

a shutdown of a supporting system, such as, for an MME system installed in an
automobile, the automobile’s being turned off

The operations required to stop then resume playback are a function of the capabilities
of the device with the media tracks for the track session. These devices can be:

devices, such as USB media stores or CD changers, that do not manage their own
track sessions and, therefore, cannot save the state of a track session. For more
information, see “Resuming playback” below.

devices, such as iPods, that manage their own track sessions and, therefore, save
the state of these track sessions. For more information, see “Resuming playback on
iPods” in the chapter Working with iPods.

For information about resuming playback when using the explorer API, see “Pausing
and resuming playback in a file-based track session” below.

If you want to stop, then resume playback of a track session on a device or devices that
don’t manage their own track session, you must:

1

Stop the track session:
la Callmme play set speed(with the speedset to O (zero) to pause the
track session.

1b Callmme trksessionsave state()to save the play position and other
information, such as the track session ID, about the track session.

1c If you plan on usingnme play_resume msid()to resume playback, call
mme set msid_resume trksession(fo set the mediastore ID to be used
by mme set resume msid()

1d Stop the track session by callimgme stop()
Do something else, such as switch to another activity or shut down the system.

Resume the track session:

Method A (works only for devices and mediastores that don’t support their own
track sessions):

3a Call mme settrksession(jo reset the track session.

3b Call mme trksessionresume state()to resume playback of the track
session.

Method B (works for all devices and mediastores):

Chapter 6 o Playing Media 71

Monitoring and managing playback 00 2009, QNX Software Systems GmbH & Co. KG.

3a Call mme play_resume msid()to resume playback of the track session
(equivalent to callingnme settrksession(then
mme trksession resume state().

mme_play_set_speed()

v

mme_trksession_save_state()

mme_set_msid_resume_trksession()
(for Method B)

mme_stop()

Other activities

A | B
mme_settrksession() mme_play_resume_msid()

v

mme_trksession_resume_state()

Stopping and resuming an MME-controlled track session.

The strategies described below allow your client application to call
mme trksessionresume state()to resume playback at a later time at exactly the
position where it was stopped.

Saving the track session state witime trksession save state() beforestopping it
assures that, when you resume playback, the MME has all the information it needs to
start playing the correct track at the correct position.

Pausing the track session before saving its state ensures that when playback resumes,
it will be exactlyat the correct position in the track: the user will not hear the last few
milliseconds of music played if there is a delay between the call to

mme trksession save state()and the call tanme stop() If you do not pause the

track session before saving its state, a situation like the following may occur:

e The playback is» milliseconds into a track.
e The client application callsnme trksessionsave state() thenmme stop()

e There is a delay ot milliseconds between the call mme trksessionsave state()
and the call tanme stop() which results in the state’s being savedcas
milliseconds, but playback stoppingrat x milliseconds.

e A call to mme trksessionresume state()starts playing the track at its saved state,
so the end user hears the portion of the track fromilliseconds to§ + X)
milliseconds a second time.

72 Chapter 6 o Playing Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

Y

e Saving the track session state witime settrksession(@nd resuming it by calling
mme set msid resume trksession()s intended for handling situations such as
system shutdowns or mediastore changes. Youncarave the track session state,
continue using the track session, then attempt to resume it.

In short, once you have saved the track session state you must stop using that track
session until you are ready to resume it. If you want to mark a place in a track
session, continue playback or do some other activity, then resume playback at the
point you marked, use the MME’s bookmark functions. For more information, see
“Bookmarking tracks” below.

e Calling eithermme settrksession(@r mme set msid resume trksession()
regenerates the list of tracks used by the MME for playback in random mode (the
entries in theandomidfield of thet r ksessi onvi ewtable).

Pausing and resuming playback in a file-based track session

Tracks in a file-based track session do not have corresponding entries in the MME

l'i brary table. This particularity means that when stopping and resuming playback,
the client application must take care of saving and restoring the file name and current
time position for the track to be paused and resumed.

Pause playback in a file-base track session

To pause playback of a track in a file-based track session:
1 Callmme play_set speed()with the speedset to 0 (zero) to pause playback.

2 Save in a safe location;

¢ the full filename for the paused track (without the mountpath)
e the current time position for the track

Resume playback in a file-base track session

February 13, 2009

To resume playback of a track in a file-based track session, assuming that the track
was passed as describe in “Pause playback in a file-base track session” above:

1 Call mme _newtrksession(jo create a new track session by with a device file ID
(fid) for the mediastore with the track to be resumed.

2 Call mme settrksession(jo set the track session.

3 Call mme setautopause(yith the enableargument set tor ue to turn
autopause on for the MME; with autopause enabled in the MME, when a track
is played it begins in paused mode and remains paused until
mme play_set speed()is called with thespeedargument set to non-zero.

4 Call mme trksessionappend files(), with thefilenameargument pointing to
the filename you saved when you paused playback, to add the paused track to
the new track session so that it can be played.

Chapter 6 o Playing Media 73

Monitoring and managing playback 00 2009, QNX Software Systems GmbH & Co. KG.

5 If your client application’s connection ot O_SYNGC; that is, if the MME does
not completely execute requests before returning to the client, wait for the event

MME_EVENT_PLAYAUTOPAUSED.
6 Call mme seektotime(Jvith thetimeargument set to the current time position

you saved before pausing the track.

7 Callmme play_set speed(with the speedargument set to 1000 to resume
playback at normal speed.

Using fast forward and reverse

Usemme play_get speed()o get the current playback speed of a track session
(expressed in units of 1/1000 of normal speed). isre play set speed(to pause,
reverse, and playback more slowly or more rapidly than normal playback speed. Set
the speedargument as shown in the table below:

Setting Action

<0 Reverse aspeed

=0 Pause playback

>0 and< 1000 Slow playback apeed
=1000 Normal playback

> 1000 Fast playback apeed

Implementation note about fast-forward and fast-backward speeds

When setting fast-forward or fast-backward speeds, the requested speed can'’t be
guaranteed for all devices. The graph used to play the track will select the supported
speed closest to the one requested. The client application should use

mme play_get status()

Some devices, such as iPods, do not maintain a constant fast-forward or fast-backward
speed, but increase the speed according to the amount of time the fast-forward or
fast-backward is maintained.

For devices with this behavior, there is no value in attempting to measure play time
during a fast-forward or fast-backward. If you are testing with these devices, you can
only ensure that fast-forward and fast-backward arrive at the end or beginning of a
track faster with normal speed.

Fast-forward and fast-backward between tracks

Note that behavior when fast-forward or fast-backward move to a new track is:

e Device dependent — some devices, such as iPods, automatically set the speed to
normal playback speed.

74 Chapter 6 o Playing Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

e Configurable by setting theAt EndOf Seek> element, if supported by the device.
The default setting is to continue seeking (fast forward of reverse). See
“Configuring playback” in theIME Configuration Guide

Using seek to time, play at offset, and scan

To seek to a specific time in a track that is being played,nuse seektotime()
passing it the time location to which you want to go and continue playback. For
example, to skip ahead 15 seconds from the current position in a track, use
mme play_get status()to get the current time location of the playback, then call
mme seektotime(Jvith the current time location plus 15000.

Scan mode plays a track for a specified number of seconds, then moves to the next
track, scanning all tracks in a track session. To use scan mode and set the time that the
MME plays a track before moving to the next track, calhe setscanmode(yith the
number of milliseconds you want to play each track before moving the scan to the next
track. To get the current scan mode setting, msge getscanmode()To turn scan

mode off, callmme setscanmode()ith the time-to-scan argument set to 0 (zero).

Gapless playback

When gapless playback is enabled, if two tracks on the same mediastore use the same
graph type, when moving from one track to the other, the MME attempts to minimize
the silence between tracks.

To enable gapless playback, you need to $tartredi a with the appropriate
arguments. For more information, see “Configuring gapless playback” iMiE
Configuration Guide

Viewing “previous” and “next” tracks

The MME stores information about tracks that have been played and will play in the
track session in ther ksessi onvi ewtable. This information allows your client
application to have the MME to move backwards through a track session, even if
random play mode is enabled.

If random mode is off, playback advances through the tracks as they are listed in the
sequentialidcolumn of thet r ksessi onvi ewtable. If random mode is on, playback
advances through the tracks as they are listed imahdomidcolumn of the

t rksessi onvi ewtable. To view the previous or next tracks in a track session, use
the file IDs listed before or after the current track in the relevant column.

Using play frequency statistics

February 13, 2009

The MME maintains information about how many times a track has been played. This
count includes fast forwards through the track. The client application can use this
information to build a most-popular or top-50 list.

The number of times a track has been played is maintained ifullipéay_countfield
of thel i br ary table.

Chapter 6 o Playing Media 75

Managing track sessions during playback [2009, QNX Software Systems GmbH & Co. KG.

Bookmarking tracks

The MME provides bookmarking capabilities that a client HMI can offer to end users.
Bookmarks allow users to mark time locations on tracks in a track session and to
resume playback from these locations. Bookmarks are recorded o therar ks

table, and are identified by a bookmark IBopkmarkig and bookmark namenamg,

a mediastore 1Drsid), and a track file 1D f{d).

To view available bookmarks, query theoknar ks table. For example, to view all
bookmarks for tracks on the current mediastore, wicereent msidis the mediastore
ID:

SELECT booknarkid, fid, nsid, nane FROM bookmar ks
WHERE nsi d=current msid ORDER BY nane;

Use the functionenme bookmark create()andmme bookmark delete()to create
and delete bookmarks, amime play bookmark()to start playback from a specified
bookmark.

Managing track sessions during playback

This section describes how to manage track sessions during playback.

Managing track changes across multiple mediastores

The MME performs track changes across different mediastores. This feature is
supported by buffer level reporting. The MME provides the amount of time
(milliseconds of playback) remaining in the MME buffer. Client applications can
retrieve this information by calling the functianme play_get status() This
information gives device controllers a more accurate measure on which to base
decisions to wake up devices, such as the system HDD.

Aborting blocking reads

Client applications can use the time left in the MME buffer to decide to abort blocking
reads in order to skip to tracks on a mediastore other than the HDD. Aborting a
blocking read allows the MME to fulfill a request to start playback of a track on
another mediastore, such as a CD, immediately. It does not have to wait for its buffer
to empty, or for the device controller to wake up the HDD.

Managing track sessions when a mediastore is removed

When a mediastore is removed from the system, the MME delivers the event
MME_EVENT_MS_ STATECHANGE which carries the new state of the mediastore in
mre_event _data_t.ns_state change. new st at e. If media on the mediastore

is included in a currently playing track session, you can manage the change according
to whether the track being played has been removed or is still on the system.

For example, if your track session includes tracks from bétv usb0 and
/ f s/ usbl, and the track being played is ofis/ usbO:

76 Chapter 6 o Playing Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Managing track sessions during playback

e If the user removesf s/ usbO0, then playback is interrupted, but you can refresh
the track session to include only tracks/drs/ usb1 and resume playback.

e If the user removesf s/ usbil, then playback continues, and you can refresh the
track session to include only tracks bhs/ usb0 and continue playback of
available tracks without interruption.

Managing playback when the current mediastore is removed

If the track currently being played is on the removed mediastore, the MME delivers
the evenMME_PLAY_ERROR DEVICEREMOVED, and stops playback:

e If the track session contained only tracks on the removed mediastore, you can
inform the user that playback has stopped because the mediastore was removed,
and request input.

¢ |If the track session contained tracks from several mediastores, you can call
mme trksessionviewupdate()to update the track session (remove unavailable
tracks), then calinme next()or mme play() to resume playback from a mediastore
still in the system.

Managing the track session if playback is not on the removed mediastore

If the track currently being played i®ton the removed mediastore, the MME
continues playback, and you can ensure that playback will continue uninterrupted to
the end of the track session:

¢ |[f the track session includes tracks on the removed mediastore, call
mme trksessionviewupdate()to update the track session (remove unavailable
tracks). When the currently playing track finishes playing, the MME will simply
advance playback to the next track in theksessi onvi ewtable.

Switching playback to another track session

The MME supports seamless switching between track sessions; that is, changing
playback from one track session to another without interrupting playlifathe new
track session includes the track currently being played.

To seamlessly change track sessions during playback:

1 Create a track session that includesfideof the currently playing track.
2 Call mme settrksession(fo set the new track session.

The MME will:

e continue playback of the currently playing track

e when playback of this track is complete, continue playing tracks from the newly set
track session

February 13, 2009 Chapter 6 o Playing Media 77

Managing track sessions during playback [2009, QNX Software Systems GmbH & Co. KG.

Q e File-based track sessions are not permanent. Their contents are lost if playback is
switched to another track session.

e Calling mme settrksession()egenerates the list of tracks used by the MME for
playback in random mode (the entries in thedomidfield of the
t rksessi onvi ewtable).

For more information about MME behavior when switching playback between track
sessions, semme settrksession(n the MME API Library Reference

78 Chapter 6 o Playing Media February 13, 2009

Chapter 7
Playlists

In this chapter...

Creating track sessions from playlists 81
Examining playlists 82
Creating playlists 83

February 13, 2009 Chapter 7 e Playlists 79

[2009, QNX Software Systems GmbH & Co. KG. Creating track sessions from playlists

Playlists can come from two sources:
e playlists included with mediastores
e playlists created by the client application, through the MME

This chapter describes how to work with playlists.

For information about synchronizing playlists, see “Synchronizing playlists” in the
chapter Synchronizing Media.

Creating track sessions from playlists

The example below shows how to create a track session from a playlist. The MME
synchronizes playlists in the playlist synchronization pass, and stores them in the
pl ayl i st s table. If we have a playlist called “My Playlist” that was built from a
SELECT statement, we can:

1 Use the QDB functiomdb_statement(jo get theSELECT statement for the
playlist.

2 Pass the statement tome newtrksession(o create a track session with the
same tracks as the playlist.

3 Set the new track session.

4 Play the tracks in the track session, in sequence from the beginning.

/1 Run the SQL statenent.

qdb_st at enent (&b,
"SELECT statenment FROM pl aylists WHERE plid=%1d; ",
plid)

res = qdb_getresult(&b);

/Il Create a new track session fromthe result.
mre_newt r ksessi on(&mehdl, (char*)qdb_cell (res, 0, 0),
MVE_PLAYMODE_LI| BRARY, &trksid);

/'l Set the new track session as the active track session.
mre_settrksessi on(&mehdl, trksid);

/1 Start playing the track session fromthe beginning,
/Il passing in a fid of 0 to start fromthe begi nning.
mre_pl ay(&mehdl , 0);

Excluding missing playlist files from track sessions

February 13, 2009

When it synchronizes playlists, the MME inserts in theyl i st dat a table afid of O
(zero) for any files that it cannot find. This action creates a record of files in a playlist
that are not found, and causes the MME to check for the existence of these files when
it performs subsequent resynchronizations.

If you build a track session using tipg ayl i st dat a table, you should explicitly
exclude files with did of 0 by adding the clauséHERE fi d ! = O to track session
queries made to thel ayl i st dat atable.

Chapter 7 e Playlists 81

Examining playlists 00 2009, QNX Software Systems GmbH & Co. KG.

Combining playlists into a track session

The MME supports multiple instances of the same filefid)(in a track session, so
you can combine playlists with duplicafiels and have the MME play all the tracks in
the combined playlists.

Examining playlists

The MME includes functions that allow you to open and examine a playlist file. To
open a playlist file and examine the contents of the playlist:

1 Call mme playlist_open()to:

e create a playlist session connection handiee(pl ayl i st _hdl _t)
e open a playlist examination session

2 Call mme playlist_items _count _get() to get the number of items in the playlist
you are examining.

3 As required, usenme playlist_position_set()to move to a specific entry in the
open playlist.

4 Callmme playlist_item _get()to retrieve an item from the current position in
the playlist, setting thBagsargument as required to convert the playlist entry
into a file.

5 Call mme playlist_close()to close the playliste examination session and free up
its buffers.

Q e mme playlist open()can only open a playlist if a playlist synchronization (PLSS)
plugin able to process the playlist is available. If no PLSS plugin for the playlist is
available, this function fails.

e The playlist examination API is very similar to the explorer API. How to use this
APl is described in the chapter Unsynchronized Media.

Case-sensitivity in playlists
Playlists are case-sensitive. Case-sensitivity applies to:
e playlist names
e pathnames to playlists
e paths inside the playlist files
e playlist entries

For examplesongs/ ny_pl ayl i st is notequivalent tasongs/ My_pl ayl i st.
Similarly, in an M3U filesongs/ Dar k Si de of the Myon. np3 is notequivalent
to Songs/ Dark Si de of the nmoon. np3.

82 Chapter 7 o Playlists February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Creating playlists

Creating playlists

The MME supports user-created playlists. Please note the following about
user-created playlists:

e Client applications must manage their own playlists, placing the file fiDs)(of
tracks in thepl ayl i st dat a_cust omtable.

e Resynchronizing a mediastore does not affect user playlists.

e Pruning a mediastore deletes user playlists. You should add a trigger to remove
entries in thepl ayl i st dat a_cust omtable when a mediastore is pruned, because
ift he mediastore is re-inserted into the system, its files will get new file IDs that
will not correspond to the file IDs in the playlists

e You can only delete user-created playlists; you cannot delete playlists on
mediastores.

Use the following functions to create and delete playlists:

e mme playlist set statement(}— set the query statement to use when creating a
playlist

e mme playlist create()— create a playlist
e mme playlist delete()— delete a playlist

Deleting a playlist

To delete a playlist, cathme playlist_delete()

To following commands can be used withecl i to use the user-created playlist
functions:

e Create a playlistrmecli playlist_create nsid nane

e Delete a playlistrmecli playlist_delete plid

February 13, 2009 Chapter 7 o Playlists 83

Chapter 8
Unsynchronized Media

February 13, 2009 Chapter 8 e Unsynchronized Media 85

[J 2009, QNX Software Systems GmbH & Co. KG.

The MME provides an extensive API for exploring and browsing unsynchronized
mediastores.

Exploring unsynchronized mediastores

AN

The MME'’s mediastore explorer API can be used to provide the end-user with the
following information from an unsynchronized mediastore, such as an iPod. It
provides:

e the number of files and folders in the folder being explored

e metadata for the files in the folder, as requested

CAUTION: Retrieving more items than can be shown at one time in the HMI display
window reduces system responsiveness:

e Always request a number of items less than or equal to the number of items that
can be shown at one time in the HMI display window size.

e Adjust the number of items requested to correspond to changes to the size of the
HMI display window.

The explorer API includes the following functions, structures and constants:
e MME_EXPLORE *

e mme explore start()

e mme explore size get()

e mme explore position set()

e mme explore info_get()

e mme explore end()

e mme explore info_free()

e nme_explore_hdl _t

e nme_explore_info_t

e mme explore playlist find file()

Exploring a mediastore

February 13, 2009

To explore an unsynchronized mediastore:

1 Call mme explore _start(), passing it the path to the folder you want to explore.
This function returns a handleye_expl or e_hdl _t, which you can use with
the other explorer functions to explore the folder.

2 Optional tasks:

Chapter 8 e Unsynchronized Media 87

[J 2009, QNX Software Systems GmbH & Co. KG.

e If you want to know the number of items of interest in the folder, call
mme_explore _size get().

¢ If you want to start exploring the folder at a specified offset (other that the
first item) callmme explore position set()with the offset at which you
want to start exploring.

¢ If you want to access metadata for the items you are exploring, call
mme _explore position set()to set up the metadata types you want. For
more information, see “Retrieving metadata from unsynchronized files”
below.

e If you want to explore a playlist, cathme explore playlist find file() and
check the values of thdME_EXPLORE * flags.

3 Begin exploring the items in the folder, starting at the specified offset, by calling
mme_explore info_get(). Each time you call this function, the offset will
increment by one, so that the next calinbmne explore info_get() retrieves
information for the next item in the folder. Whenme explore info_get()
reaches the end of the folder, it retumigLL.

As you explore the folder, you can display to the user any metadata you have
retrieved, and, if the user requests more complete metadata, call

mme ms _metadata get() mme metadata extract data() and, if required,

mme metadata extract string() andmme metadata extract unsigned()o
retrieve and extract the metadata, then pass it up to the user.

Items retrieved bynme explore info_get() are presented as they occur; that is, they
arenotsorted or reorganized in any way. The items that are playable tracks, can be
placed in file-based track sessions for playback. For information about how to create
and modify file-based track sessions, see “Creating and modifying file-based track
sessions” in the chapter Playing Audio.

CAUTION: This function may require considerable time to complete execution: with
some mediastore types, it requireseaddir() of the entire item being explored.

Retrieving metadata from unsynchronized files

The mediastore explorer API can be used to get the number of files and folders inside a
specified folder on a mediastore, and, if requested, metadata. For optimal performance
you should compose two different strings specifying the metadata to be retrieved:

e The string you pass tmme explore position set()should set up
mme _explore info_get()to request only the metadata you will display to a user
exploring the mediastore (for example, title and artist) — enough information to
allow the user to decide if he or she wants more information about the track.

e The string you pass tmme metadata extract() should request more complete
metadata, which the client application passes up to the user only in response to a
specific request for more information.

88 Chapter 8 ¢ Unsynchronized Media February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Y

It is possible to request complete metadata frame explore info_get(), but doing
so may prove slow, especially when communicating with external devices, such as
iPods, that are connected via relatively slow ports.

There are two possible methods for composing the strings to retrieve metadata. Both
methods use the values defined by METADATA _* constants. You can compose
your strings as comma-separated values according to either of the following models:

e char *types="title,artist, al bunt

e char *types=METADATA Tl TLE", " METADATA ARTI ST", " METADATA_ALBUM

Reading and displaying explored file names

All filesystem APIs under QNX use UTF-8 character sets; and, with the exception of
QNX4, all enforce its use, converting the character set on media to and from UTF-8 as
required.

This characteristic of QNX filesystems means that when your client application is
reading file and folder names from the explorer API it should assume that these names
are in UTF-8 format. This rule includes filenames successfully converted from playlist
file entries, but it doesot include unconverted (raw) playlist file entries; the explorer

API takes these entries directly from the playlist itself and does not convert them.

For information specific to displaying information from iPods, see “Displaying
information from an iPod” in the chapter Working with iPods.

Filtering explored files

February 13, 2009

You can use thenme explore position set()function’sflagsandfilter arguments to
filter the files examined and deliver only files of interest. Filtering is based on the
values set in thlagsargument, and can be done in two ways:

e flags=sMME_EXPLORE FILTER_INCLUDE — include only files with names that
match the string referenced by thiker argument

e flags=MME_EXPLORE FILTER_EXCLUDE — exclude all files with names that
match the string referenced by thiker argument

For example, to include only MP3 and WAVE files, based on the extension® and
. wav, you should calmme explore position set()as follows:

rc = nme_explore_position_set(x_hdl, 0, 20, NULL, ".np3$|.wav$",
MVE_EXPLORE_FI LTER | NCLUDE) ;

Or, to exclude all files with the extensiomov, do the following:

rc = mme_explore_position_set(x_hdl, 0, 20, NULL, ".nov$",
MVE_EXPLORE_FI LTER EXCLUDE) ;

For more detailed information, seeme explore _position set()in the MME API
Library Reference

Chapter 8 e Unsynchronized Media 89

[J 2009, QNX Software Systems GmbH & Co. KG.

Using directed synchronization to browse mediastores

You can use the MME's directed synchronization capabilities to browse through
mediastores. To let users browse through parts of a mediastore, call

mme sync directed()with the path to the folder where you want to begin browsing.
When the end user selects a new folder, call the function again with the new path.

For more information about directed synchronization, see “Directed synchronization”
in the chapter Synchronizing Media.

90 Chapter 8 e Unsynchronized Media February 13, 2009

Chapter 9
Metadata and Artwork

In this chapter...

Getting metadata 93
Getting artwork 97

February 13, 2009 Chapter 9 e Metadata and Artwork 91

0 2009, QNX Software Systems GmbH & Co. KG. Getting metadata

This chapter describes how to get metadata and artwork for your media files. It
includes:

Getting metadata

The MME provides a variety of methods for retrieving metadata. You can use the
MME to retrieve metadata:

e for synchronized media, from the MMHE'S br ar y table, updated by the MME’s
second synchronization pass

e for unsynchronized media as well as synchronized media, directly from the
mediastore

e from thenowpl ayi ng table

e from a remote source, such as a Gracenote server

Getting metadata for synchronized media

February 13, 2009

You can provide your end users with information, such as album title, artist, and
composer, for the currently playing file or track in a library-based track session by
retrieving this metadata from the MMHE'S br ar y table.

To retrieve metadata for the currently playing file or track fromlither ar y table:
1 Call mme play_get info() to get the current file IDf{d).
2 Query the MME database for the metadata.

The sample query shown below retrieves title, aloum name, artist name, genre name,
and composer name, assuming that you know onlyithir a track:

SELECT title, artist, album genre, conposer
FROM I'i brary NATURAL JO N (
library_al buns, library_artists, library_genres, |ibrary_conposers)
VWHERE fid=%Id;

A library-based track session is a track session createdsyitbhronizednedia files.
For more information, see “About track sessions” in the chapter Playing Audio.

If an MP3 file contains more than one version of ID3 tags, the MP3 file parser parses
the most recent tag and ignores the older tag version. That is, if a file contains both
ID3v1 and ID3v2 metadata tags, the MP3 file parser ignores the ID3v1 tags. Only the
metadata from the the ID3v2 tags is made available to the MME.

For information about getting metadata for tracks in a file-based track session; that is
track sessions created witimsynchronized media, see “Getting metadata for
unsyncrhonized media” below.

Chapter 9 e Metadata and Artwork 93

Getting metadata 0 2009, QNX Software Systems GmbH & Co. KG.

Getting metadata for unsynchronized media

The MME includes an API that can be used to retrieve metadata for files on an both
synchronizecandunsynchronizeanediastores and devices.

This feature is particularly useful for quickly retrieving metadata for specific files from
large mediastores or devices, such as iPods, that would take a long time to synchronize
completely. For example, you can use this feature to retrieve metadata for a single file
or a small number of files, to display in to a user exploring the contents of a

mediastore or device.

This API includes the following functions, structures and constants:
e mme metadata extract data()

e mme metadata extract string()

e mme metadata extract unsigned()

e mme ms metadata done()

e mme ms metadata get()

e mMme_netadata_hdl _t

e METADATA *

The metadata extraction functions listed above require the filepath and filename of the
file whose metadata is needed — for example, to display to a user who requests more
information about a track on an iPod.

Thus, to retrieve and make available metadata for unsynchronized media, you must:

e Use the MME explorer API functions as described in the chapter Unsynchronized
Media to get the filepath and filename of the file.

e Follow the steps described in “How to get the metadata” below to extract the
metadata from the file.

How to get the metadata
Once you have the path for the file whose metadata is needed:

1 Callmme ms_metadata get(), passing it the path to the file whose metadata
you need, and the types of. It returns thee_net adat a_hdl _t with the
metadata for the file.

2 Call mme metadata extract data()to get the format of the metadata, and
mme metadata extract string() to extract metadata strings and
mme metadata extract unsigned()to extract unsigned metadata.

3 Use the metadata as required — for example, display to the end-user.

4 Callmme ms_metadata done()to complete the operation and release the
metadata handle.

94 Chapter 9 o Metadata and Artwork February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Getting metadata

Managing explorer structures and metadata handles

Metadata extraction from unsynchronized media requires that the client application
manage the explorer information structures and the metadata and explorer handles it
uses. The client application must:

e copy thenme_expl ore_i nf o_t data structure
e manage the copies of this structure and the memory they require
e usemme metadataalloc() to copy metadata handles

e when it has finished with the metadata handles, deallocate the returned value from
mme metadata alloc() by usingfree()

The client application must useme metadata alloc() to copy the metadata handle.
This copiedmetadata handle returned tmyme metadata alloc() maintains valid
information until the client application releases it.

Simply copying theme_expl or e_i nf o_t data structure does not guarantee valid
information because:

e the pointer in theme_expl ore_i nf o_t data structure to the metadata handle
may go out of scope before the client application has finished using the metadata
object to which it refers

e me_expl ore_i nf o_t contains two pointers:

- one pointer to the path member
- one pointer to the metadata; this pointer may be null

e to ensure current and valid structures, the client application must have, as well as a
copy of thenme_expl ore_i nf o_t data structure, a copy of the metadata handle
structure:nme_net adat a_hdl _t ; this handle is opaque and, therefore, can not be
copied by the client application

The pointer to the path is a normal C-string; the client application:
e may use any method, suchstsdup()or strcpy() to copy the source string

e is responsible for managing the memory required for these copies

Getting metadata from the nowpl ayi ng table

February 13, 2009

Thenowpl ayi ng table may contain more complete metadata than is available in the
l'i brary table — for example, when playing an iPod track session, because an iPod
makes information, such as track duration, available only during playback.

When the MME starts playing a new track it updates the information in the
nowpl ayi ng table and delivers aMME_EVENT_TRACKCHANGE event. When it
updates metadata in thewpl ayi ng table it delivers the event

Chapter 9 e Metadata and Artwork 95

Getting metadata

[J 2009, QNX Software Systems GmbH & Co. KG.

MME_EVENT_NOWPLAYING_METADATA, which you can use to trigger queries to

retrieve the updated metadata.
See also the description of thewpl ayi ng table in the appendix: MME Database

Schema Reference of th@éME API Library Reference

Getting metadata from a remote source

Y

The MME supports metadata from remote sources, such as CDText, Gracenote and
MusicBrainz. To use these capabilities, you must change the MME configuration file,
mre. conf , to enable the relevant MME modules and configure the specific behaviors
required by your environment.

For information about how to configure the MME to support these modules, see
“Metadata synchronizers” in the chapter Configuring Metadata Support ithie
Configuration Guide

Support for these features may require special licensing. Contact QNX for more
information.

Metadata ratings

AAC and MP3 files

WMA files

This MME supports metadata rating extractions for the following formats:
e AAC

e MP3

e WMA

If the ratings are available, the MME’s MMF module extracts metadata ratings in
AAC and MP3 files from the following tags:

Tag Frame
ID3v2.2 POP

ID3v2.3 POPM
ID3v2.4 POPM

If the ratings are available, the MME’s MMF module extracts metadata ratings in
WMA files from theExt ended Cont ent Descri ption Object’s
WW Shar edUser Rat i ng record.

96 Chapter 9 o Metadata and Artwork February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Getting artwork

Ratings conversions

The MME stores metatdata ratings in tta¢ing field in the:
e librarytable

e nowpl ayi ng table

Therating field in thenowpl ayi ng table makes a file’s rating available even when the
file does not have an entry in thé br ar y; for example, when the file is accessed
through the MME'’s Explorer API.

Rating values are stored as follows:
e 0 — no metadata rating is available
e 1to 255, with 1 for the lowest rating and 255 for the highest rating

The MME stores ratings from AAC amd MP3 file ID3 tags without conversion. It
converts WMA fileWww Shar edUser Rat i ng record ratings from their 1 to 99 range
to a 1to 255 range.

The table below shows how the the MME’s 1 to 255 rating system maps to WMA 1 to
99 rating system and to the WMA five star rating system:

MME WMA Stars
1-60 1-24 R
61-125 25-49 *
126-190 50-74 ***
191-254 75-98 ****

255 99 el

Getting artwork

Y

The MME includes a “Load-on-Demand” API for retrieving metadata. This APl is
designed to support on-demand retrieval of all types of metadata, but it is currently
implemented for artwork, such as album art images.

The Load-on-Demand metadata API can be used to retrieve artwork from
synchronized or unsychronized media. It requires only that you specify the file for
which you want to retrieve the artwork.

Functions and data structures

February 13, 2009

The MME’s Load-on-Demand metadata extraction API includes the following
functions and data structures:

Chapter 9 e Metadata and Artwork 97

Getting artwork 0 2009, QNX Software Systems GmbH & Co. KG.

e mme metadata create session(}— create a new metadata session
e mme metadatafree_session(}— end a metadata session

e mme metadata getinfo_current() — retrieve metadata for the currently playing
track

e mme metadata getinfo file() — retrieve metadata for the specified file, based on
its filepath

e mme metadata getinfo library() — retrieve metadata for the specified file, based
onits file ID in thel i br ary table

e mme metadataimage load() — load an image for a file

e mme metadataimage unload()— clear a specified image from temporary
storage

e mme_net adat a_i mage_ur | _t — the structure carrying the URL for an image

e mme_net adat a_i nf o_t — the structure that carries the metadata retrieved by
any of the themme metadata getinfo_*() functions

e me_net adat a_sessi on_t — a metadata session identifier

Information for images stored in the MME’s metadata image persistent cache is kept
inthemdi _i mage_cache table.

For information about how to set configuration options for the MME’s metadata
extraction API, see the chapt®fME Configuration Guidehapter Configuring
Metadata Support.

| i bxm 2. so library and headers

MME releases include thei bxm 2. so library and appropriate headers; this library
and the headers are required by clients of the MME in order to parse the metadata
structures delivered by the MME metadata extraction functions.

Thel i bxn 2 library delivered with the MME includes only a small subset of the full
I'i bxni 2 library; it includes only the modules required for reading, parsing and
writing XML files. Thexn ver si on. h header file indicates exactly what functional
modules are in the included library.

Documentation fof i bxm 2 is available aknl sof t . or g.

Feature limitations

The current release support is limited, as follows:
e Support is limited to only thei mage>/<f or mat > metadata group

e The<i mage>/<f or mat > metadata group does not produce the following image
information:

98 Chapter 9 o Metadata and Artwork February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Getting artwork

- MIME type
- Description: “Front Cover”, “Back Cover”, etc.

Extraction of external artwork is supported, but is limited to the following
filenames:

al bum j pg
ALBUM JPG

- folder.jpg
- FOLDER. JPG

Retrieval of embedded artwork from WMA files is not supported.

Using the metadata extraction API

The MME's metadata extraction AP| usemtadata session® metadata session uses
a metadata session identifier used by the metadata extraction functions.

Metadata extraction includes the following tasks:

1

Call mme metadata create session(Xo create a metadata session and reserve
the required system resouces.

Call one of themme metadata getinfo *() functions to retrieve the required
metadata for a specified file and place it in thee_net adat a_i nf o_t data
structure.

If an image is available and required, caline metadataimage load() to load
the image into the image cache.

Callmme metadatafree _session(}o close the metadata session and free the
system resources it was using.

The metadata extraction functions deliver metadata information as XML in the
mre_net adat a_i nf o_t structure. For more information, and examples, see “XML
content” on theme_net adat a_i nf o_t structure reference page.

As required, the client application can also:

February 13, 2009

usemme metadataimage cache clear() to clear specified images from the
metadata image cache

usemme metadataimage unload()to clear a specified image from temporary

storage

Chapter 9 e Metadata and Artwork 99

Getting artwork

[J 2009, QNX Software Systems GmbH & Co. KG.

Q The MME supports extraction of album artwork from iPods for the currently playing
trackonly. To retrieve album artwork from iPods, use the metadata extraction API as
you do to retrieve artwork from other devices and mediastores.

See also “Retrieving artwork from iPods” in the chapter Working with iPods.

Image pre-processing

The MME supports image pre-processing with the following capabilities:

e Decoding from the following source formats:

BMP
GIF
JPEG
PCX
SGl
TGA

e Encoding into the following target formats:

BMP
JPEG

e Image scaling and rotation

Images encoded into the BMP format may not be readable by some external
applications.

Enabling image pre-processing

The MME’s image processing capabilities are configured through the
<Met adat al nt er f ace>/<| nagePr ocessi ng>element in the MME’s
configuration filepme. conf .

To enable image pre-processing, you must:

1
2
3

Configure the image processing library.
Enable one or more image processing modules.

Configure image processing profiles to be used by the MME’s metadata
Load-on-Demand API.

100 Chapter 9 o Metadata and Artwork February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Getting artwork

CAUTION: If you do not enable the image processing module, or if there are no
image processing modules configured, attempts to use a defined image processing
profile through the MME’s metadata interface will fail with &INVAL error.

For information about how to configure and enable the MME for image
pre-processing, see “Image pre-processing” in the chapter Configuring Metadata
Support in theMME Configuration Guide

Using image pre-processing

The MME'’s metadata APl implements theme metadataimage load() function to

load and, if requested, process images. Image processing is specified through the
function’simage format _profile parameter. This parameter can be set to either -1 if
no image processing is required, or the number of a pre-defined image processing
profile. For more information about these profiles and how to configure then, see
“Configuring image processing profiles” in the chapter Configuring Metadata Support
in the MME Configuration Guide

For more information abouhme metadataimage load(), see theMME API Library
Reference

February 13, 2009 Chapter 9 o Metadata and Artwork 101

Chapter 10
Playing and Managing Video and DVDs

In this chapter...

Playing and managing video 105
Playing and managing DVDs 106

February 13, 2009 Chapter 10 e Playing and Managing Video and DVDs 103

00 2009, QNX Software Systems GmbH & Co. KG. Playing and managing video

This chapter describes how to work with track sessions and play audio media on the
MME.

Playing and managing video

The MME supports playback of MPEG4 files with H.264 video.

Playing video files

Video files in thel i br ar y table are identified by theftypeset toFTYPEVIDEO(2)
or FTYPEAUDIOVIDEO (3). To play a video file, you need to:

1 Configure the MME for video support, by adding a video output device to the
MME's out put devi ces table, and setting values and behaviors for this device.
For instructions, see “Configuring the MME for video support” in the chapter
Control Contexts, Zones and Output Devices of this guide.

2 Create and set a track session that includes the video file you want to play, just
as you would a track session with only audio files, or use the MME’s Explore
API to access the video file.

3 Start and manage playback, just like you would playback of an audio file: call
mme play(), mme stop() etc.

For information about:
e managing video playback, see “Managing video attributes” below.
e playing DVD-video, see “Playing and managing DVDs” below.

e configurei o- medi a for optimal video performance, see “Configuring- nedi a
for video ” in theMME Configuration Guide

Managing video attributes

February 13, 2009

The MME provides an array of functions for managing videos while they are playing,
including:

e mme video get status() which gets status information for video playback of any
format. The MME indicates that there has been a change in video status by sending
anMME_EVENT_VIDEO_STATUSevent.

e mme video set angle() which sets the video angle for video playback. Before
calling this function, usenme video _get angle info() to get the current video
angle.

e mme video set audio(), which sets the audio stream for video playback in a
control context, andhme video get audio_info(), which gets information about
audio settings for video playback.

Chapter 10 e Playing and Managing Video and DVDs 105

Playing and managing DVDs 00 2009, QNX Software Systems GmbH & Co. KG.

e mme video get subtitle info() andmme video set subtitle() which get and set
the subtitles for video playback.

e mme setlocale() which sets the preferred language for strings that indicate
unknown media metadata, antune getlocale() which gets the locale information.

Playing and managing DVDs

The MME is designed to support the playing of:
e an entire DVD with navigation

e selected parts of a DVD, observing legal and other requirements and restrictions

DVD and video support is platform-specific. If MME API functions that support DVD
mediastores and video playback are called on a system that does not have the required
i o- medi a modules, these functions return an error vétiorno set to ENOSYS.

Please contact us to discuss your DVD and video implementation requirements.

DVD synchronization

Playing DVDs

When the MME synchronizes a DVD, it creates in thér ary:
e an entry for the entire DVD, witltypeset toFTYPE_DEVICE (5).
e entries for the various parts of the DVD.

The file IDs (ids) for entire DVDs can be found by examining thiebr ar y table
entries where thétypecolumn has the value {YPE_DEVICE from
nme/ i nt er f ace. h).

The example below shows an SQL query to select all DVD entries in the library:

SELECT fid, title FROM Iibrary WHERE ftype=5;

The MME supports playing an entire DVD or only a part of the DVD, subject to legal
limitations that may either restrict access to some parts of a DVD or impose playback
of other parts, such as the copyright notice and warning.

When playing a DVD-video, you can useme video get info() to get information,
such as codec, capture format, and aspect ratio for the video, and
mme video set properties()to set the video properties for output.

106 Chapter 10 o Playing and Managing Video and DVDs February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Playing and managing DVDs

Playing an entire DVD

To play an entire audio or video DVD, simply include tfiéfor that DVD in your

track session. With the entire DVD in the track session, you camuak button()to
move around on the DVD, play media, and manage behavior. The MME delivers the
appropriate events at all transitions during the DVD playback.

Playing specific parts of a DVD

To play specific parts of an audio or video DVD (title, chapter, etc.), you can place the
fids for the parts of the DVD you want to play in a track session, then play the session.
The MME will play only the specified part of the DVD, and deliver the event
MME_EVENT_FINISHED when it has finished playing it.

Note that for DVD-videos legal restrictions may prevent playback of some parts of the
DVD using this method. Similarly, attempts to usene button()to circumvent these
restrictions will be rejected.

Starting playback from a specific DVD title and chapter

You can start playback at a title and specific chapter of an audio or video DVD by
calling mme seek title_chapter()when you would use a command button:

1 Create a track session with the file 1f)dj for the entire DVD.
2 Set the tracksession.

3 Call mme play() to start playback.

4

Once the navigator is active, catime seek title_chapter()to seek to the
desired title and chapter on the DVD.

Usemme get title_chapter()to get the number of titles and chapters in the current
track, and the currently playing title and chapter numbers; use
mme seek title_chapter()to seek to a specified title and chapter.

You can use these functions only if tME_PLAYSUPPORT NAVIGATION flag is set
in the supportmember of the data structunere_pl ay_i nf o_t . Call
mme play_get info() to get this structure .

For sample code snippets, see the examples on the reference pages for
mme get title_chapter()Jandmme seek title_chapter()
Setting the default preferred media language

To set the default preferred language for a media item, call

mme media set def lang() with thelang argument pointing to a string with the
requested language. You can also nsre media get def lang() to find out the
currently set langauge.

See also Configuring Internationalization in M&E Configuration Guide

February 13, 2009 Chapter 10 e Playing and Managing Video and DvVDs 107

Playing and managing DVDs 00 2009, QNX Software Systems GmbH & Co. KG.

Managing DVD access

The MME API provides functions that facilitate managing access to DVDs, offering
client applications the ability to get disk regions.

Using DVD region codes

108

Region codes are used to set the regions for which a device is enabled, and to check
the region of DVD-video discs before they are played. For example, if a user has a
device enabled for regions 1 and 3, the HMI can check that a DVD-video disk is from
one of these regions before allowing the user to play it.

Region codes are represented in bits 0 to 7, with bit O representing region 1, up to bit 7
representing region 8. The API takes a 32-bit region code, but the top 24 bits of the
region are not currently used.

The functionmme dvd_get disc _region() gets the region code of specific DVD-video
discs that are inserted into the DVD drive. The bits that are returned from

mme dvd _get disc_region() represent the regions in which the DVD-video disk may

be played. If no bits are set, the DVD-video disk is regionless and can be played in any
region.

It is the responsibility of the user application to set and track device regions, and to
inform the end user through the HMI of conditions where the regions for a DVD-video
disk are incompatible with the regions set for the device.

Chapter 10 e Playing and Managing Video and DVDs February 13, 2009

Chapter 11
Playback Errors

In this chapter...

CD drive timeout 111

Playback buffering 111

Playback read error recovery 112

Stopping playback after repeated playback failure$13
Marking unplayable files 113

Handling damaged media 114

February 13, 2009 Chapter 11 e Playback Errors 109

0 2009, QNX Software Systems GmbH & Co. KG. CD drive timeout

This chapter describes common playback errors and how to manage them.

The MME offers a number of methods for handling problems with media and with the
environment in which it is used. These problems include damaged media, corrupt
files, and vibrations in the environment.

Many of the options that configure the way the MME handles problems with media
and its environment are configurediin- medi a. For more information, see
i o- medi a in the chapter MME Utilities Reference.

CD drive timeout

When they encounter a read problem, many CD drivers (sudeds- ei de)

automatically retry the read until they time out. If the read problem is due to

vibrations, there is a good chance that the vibrations will cease before the time out and
that the playback will continue successfully. However, if the read problem is due to
scratched or otherwise damaged media, the read will continue to fail until the drive
times out and delivers &glO error.

This behavior indicates that driver read timeouts should be configured differently
depending on the environment in which a drive is installed:

¢ In an environment (such as a stationary installation) with little chance of vibration
errors, read errors will almost always be caused by defective media. There is,
therefore, no need for a long retry period, and the read timeout period should be
relatively short.

e In moving environments (such as in automobiles, airplanes, or trains), read errors
will often be caused by vibrations and not by problems with the media storage
device (the CD or DVD). A relatively long retry period will allow the drive to
recover and continue playing.

To set the timeout period for a drive, use the command-line options for your CD drive.
For more information about setting the driver time-out period, refer to the
documentation for the CD driver or drivers you are using.

Playback buffering

To permit uninterrupted playback to the user in the event of recoverable read errors
(such as errors caused by vibrations) medi a buffers data. By default,o- nedi a

gueues 49 buffers of data for playback. The data is buffered before decompression, so
the play time for these buffers varies according to the amount of compression used for
the media tracks being played. Total buffered play time available with 49 buffers is,
approximately:

e CDDA — 10 seconds of buffered play time.
e MP3 — 100 seconds of buffered play time.

Other media formats have comparable buffered play times, depending on the level of
data compression.

February 13, 2009 Chapter 11 e Playback Errors 111

Playback read error recovery [2009, QNX Software Systems GmbH & Co. KG.

You can specify the number of buffers available for queued playback via the
i o- medi a configuration file.

Playback read error recovery

If i o- medi a encounters a read error from a CD drive and it cannot recover within the
time set in the device driver timeout configuration, the MME will attempt to skip

ahead to a different part of the track and continue playing. If the MME encounters a
read error at the new location, it increases the skip time and attempts to read the media
at a third location. If this read fails, the MME repeats the process until one of the
following conditions occurs:

e While skipping forward, the MME reaches the end of the track. In this case the
MME reports a normal end of track.

e Attempts to read the track continue failing until the number of skip forwards
exceeds the maximum allowed. In this case, the MME reports a fatal read error.

Note thati o- medi a may skip ahead due to damaged (scratched) media or to
vibrations in the environment;o- medi a knows only that the CD drive reported a
read error and that it needs to skip to another part of the track it is trying to play.

You should configuré o- medi a at startup to define how it behaves in the event of
playback read errors. Configurable settings are:

e enable skip ahead — enable or disable skip ahead on playback read error

e skip seek time — the number of milliseconds to skip forward in a track when
attempting to recover from a read error.

e increment percent — the percent of the previous skip seek time to seek forward
repeatedly until playback is possible

e maximum retries — the maximum number of times to skip before failing.

For example, with the skip seek time set to 120 milliseconds and the increment percent
set to 50, ifi o- medi a is unable to play from a point on a track, it will:

1 Skip forward 120 milliseconds and attempt to resume playback.

2 If playback fails at the new positiono- medi a will add 50 percent to the skip
time (60 milliseconds), and skip forward a second time (180 milliseconds
forward from the original point of failure).

3 If playback fails a third timeij, o- medi a will add 50 percent to the last skip time
(90 milliseconds, for a total skip of 270 milliseconds from the original point of
failure).

4 If the failure persistsi, o- medi a will continue to skip forward in 50 percent
increments until it is able to successfully play the track or it reaches the end of
the track.

112 Chapter 11 e Playback Errors February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Stopping playback after repeated playback failures

Wheni o- nedi a is able to resume playback, it resets the skip seek time to the
configured time.

Q If a track is being played backwards, ainat nedi a is configured to skip on error,
i o- nedi a:

e skips backwards

e stops and reports a read failure at the beginning of the track

For more information about configuring playback read error recovery behavior, see
“Configuring how the MME handles playback read errors” in BiglE Configuration
Guide For information about how to configure- medi a, seei o- nedi a in the

MME Utilities Reference

Stopping playback after repeated playback failures

When the MME receives the instruction to play a tracide play(), mme next() or

mme prev()), it attempts to start playback of the requested track. If the requested track
is not playable because the media is damaged (e.g. a scratched CD), the MME
attempts to play the next track, continuing until it finds a playable track or it has tried
and failed to play every track in the track session. This behavior prevents the MME
from processing any other request until it has found a playable file or attempted to play
every track in the track session.

To stop the MME from attempting to play every track in a track session, you can call
mme stop()to stop playback, and switch playback to another track session on another
mediastore, such as the HDD, then eject the bad mediastore. You can determine the
conditions under which your client application will usene stop()to stop a track
session. For example, your client application can stop a track session after it receives
severaMME_PLAY ERROR READ and/orMME_PLAY ERROR CORRUPTevents in
sequence.

Marking unplayable files

The MME provides a flag that identifies unplayable files. Your client application can
use this flag to filter unplayable files from track sessions. If the MME is unable to play
a track, it:

e may mark the track as unplayable by setting the trapldyablefield in the
l'i brary table to O (zero)

e delivers arlMME_PLAY_ ERROR*event

February 13, 2009 Chapter 11 e Playback Errors 113

Handling damaged media 00 2009, QNX Software Systems GmbH & Co. KG.

What files are marked as “unplayable”

Theplayablefield does not apply to files that the MME can start to play but on which
it encounters errors later during playback. The MME marks only files for which it
cannot initiate playback because, for example, the file is invalid, the codec for the file
format is not available, or DRM forbids playback of the file.

For errors that occur after playback starts (e.g. a track is so badly scratched in the
middle thati o- nedi a gives up trying to read it, or an MP3 file is corrupt somewhere
in the middle), the MME doesn’'t send &ME_PLAY_ERROR*event and the

playable field isn't set to O (zero). In these cases, the MME delivers an
MME_EVENT_TRACKCHANGE event when it goes to play the next track.

Skipping “unplayable” files

To ensure that your client application does not attempt to play files marked as
unplayable, you can include the clavAdERE pl ayabl e=1, in the SQLSELECT
statement you use to build your track sessions.

The<Ski pUnpl ayabl e> configuration element can be used to have the MME
automatically skip unplayable files without sending any error messages to the client
application. For more information, see “Automatically skip files marked as
unplayable” in theMME Configuration Guide

Handling damaged media

114

To support handling of damaged media, when it encounters read errors, the MME
returns the following events, depending on the type of read error condition
encountered:

e MME_EVENT_PLAY_ WARNING —i o- nedi a encountered a read error and is
attempting to skip forward past the bad section of the track.

e MME_EVENT_PLAY_ERROR—i o- nedi a has surpassed the maximum skip
forward on read error attempts, and has given up attempting to read the track.

e MME_EVENT_TRACKCHANGE — while attempting to skip forward past a bad
section of a tracki, o- nedi a has advanced beyond the end of the track. The MME
has performed a track change and is attempting to play the new track.

e MME_EVENT_FINISHED — while attempting to skip forward past a bad section of
atrack,i o- nedi a has advanced beyond the end of the track, and there are no more
tracks to play in the track session.

To support this behavior, the enumerated typewar ni ngs_t has the following
values:

e MM_WARNING_READ TIMEOUT — the source was slow and a read timed out.

e MM_WARNING_READ_ERROR— there was a read error, and the operation is
trying to recover.

Chapter 11 e Playback Errors February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Handling damaged media

Synopsis
t ypedef enum e_nm war ni ngs {
MM WARNI NG_READ_TI MEQUT = 0x1,
MM _WARNI NG_READ_ERROR = 0x2,
} mm warni ngs_t;

February 13, 2009 Chapter 11 e Playback Errors 115

Chapter 12
Copying and Ripping Media

In this chapter...

About media copying and ripping 119
Copying and ripping media 120
Managing the copy queue 125
Modifying media metadata 126

February 13, 2009 Chapter 12 ¢ Copying and Ripping Media 117

0 2009, QNX Software Systems GmbH & Co. KG. About media copying and ripping

The MME provides capabilities for copying and ripping media. Ripping is the process
of reading files from a mediastore, changing the format of these files into another
format if required, then writing the files in their new format to a mediastore or other
storage device. Copying media is simply ripping media and writing the destination
files in the same format as the source files.

About media copying and ripping

You can instruct the MME to rip media from one or several mediastores to any
writable mediastore.

The copying and ripping process

When the MME performs a ripping operation, it looks through its copy queue, stored
in thecopyqueue table, for the IDs of the files to copy or rip, as well as other
information it needs for the operation.

If it is copying media, the MME will copy files along with all their metadata.

Depending on how it is configured, the MME will either copy all media to one folder

or preserve the original folder paths for the copied files on the destination mediastore.
For more information, see “Managing folder paths” below.

The MME will copy or rip a file only if it isn’t being played or synchronized.
Similarly, the MME will abort a copy or ripping operation if during the operation the
source file is requested for playback.

If it is ripping media, the MME uses a metadata database, such as Gracenote, AMG or
CD-Text, to add to the metadata of the new ripped file, and uses the ripping template
defined throughmme mediacopier add() to retrieve the folder paths to use when

writing the ripped files. For more information, see “Copy folder paths and ripping
templates” below.

When it has received notification that a copy or ripping operation has completed, your
client application should useame mediacopier clear() to clear the copy queue so
that subsequent copying or ripping operations don’t copy or rip the same files twice.

Monitoring progress and playback

Your client application should useame mediacopier get status()to retrieve the

status of media copying and ripping. Copying provides the number of bytes to be
copied and the number of bytes copied. Ripping provides the total play time of the
media track and the amount of play time ripped. Always check for MME media
copying and ripping event$AME_EVENT_MEDIACOPIER _*) to check on the
progress of copying and ripping operations, and to know when they are completed.

Priority background ripping

If priority background ripping is set, the MME plays back copied or ripped files from
the copied or ripped files, not from the source file.

February 13, 2009 Chapter 12 ¢ Copying and Ripping Media 119

Copying and ripping media 0 2009, QNX Software Systems GmbH & Co. KG.

Event delivery during priority background ripping
During priority background ripping operations, delivery of:

e MME_MEDIACOPIER COMPLETEIndicates that there is nothing left in the
copyqueue, and that the mediacopier is stopping.

e MME_MEDIACOPIER DISABLED indicates that the mediacopier has stopped
because:

- it received a stop request from thene mediacopier disable()
or

- itis unable to rip any of the tracks currently in the copyqueue

Copying and ripping media

Copying or ripping with the MME requires that you perform the following tasks, in
order:

1 Check and, if necessary, set the media copying or ripping mode.

2 For copy operations, decide if you want to preserve the original folder path or
use a new path on the target mediastore; for ripping operations, get the ripping
template.

3 Prepare the copy queue with the files you want to copy or rip.
4 Start the operation.

When it has finished copying or ripping all files in the copy queue, the MME delivers
the evenMME_EVENT_MEDIACOPIER_COMPLETE

Setting the copy or ripping mode

To check the copy and ripping mode, usene mediacopier get mode() to set the
mode, usanme mediacopier set mode()

The MME offers two modes for media copying and ripping:
e background
e priority background

Both the background and the priority background modes are non-blocking. That is,
after you set up the copy or ripping operation and nathe mediacopier enable()to

start it, the MME starts copying or ripping in the background and your application can
go on to perform other tasks. Usane mediacopier get mode()to retrieve the

current media copying and ripping mode. Note that to use priority background media
copying and ripping, you must enable this mode in the configuratiomfiée conf

before starting the MME. For more information, see the chapter Configuring Media
Copying and Ripping in thIME Configuration Guide

120 Chapter 12 o Copying and Ripping Media February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Copying and ripping media

The figure below illustrate background ripping:

@
Memory stick

CD player

0y

Hard drive

Media
reader

Encoder

File
writer

a0
Memory stick

)

Hard drive

MME background ripping operation.

The figure below illustrates priority background ripping with playback:

a0
Memory stick

CD player

0

Hard drive

@
Memory stick
e 5 Encoder » File @
reader writer
Hard drive
Media Decoder »| Audio >
reader writer y—

MME priority background ripping operation with playback.

Copy folder paths and ripping templates

If you are copying media, you can elect to preserve folder paths; if you are ripping
media, you can use ripping templates to define how ripped files will be organized on

the target mediastore.

Managing folder paths

February 13, 2009

The MME can be configured to maintain folder paths by default when copying files by

setting the<Pr eser vePat h> element in theme. conf file: <Pr eser vePat h

enabl ed="t rue"/ >. For more information, see the chapter Configuring Media

Copying and Ripping in thIME Configuration Guide

If it is configured or instructed to preserve folder paths, when it performs a file copy,

the MME:

e recreates in the destination the folder paths for the copied files

Chapter 12 e Copying and Ripping Media

Copying and ripping media 0 2009, QNX Software Systems GmbH & Co. KG.

Y

e updates thé ol der s table with entries for the newly created folders

For example, if a source file is located in
/ fs/ usb0/ mynusi ¢/ al buns/ pi nkf | oyd/ wal | . np3, the MME will copy it to
[medi a/ drive/ripped/ nmynusi c/ al buns/ pi nkfl oyd/ wal | . np3.

The MME also supports the dynamic setting of folder paths during a copy, which you
can select later in the process, when you patie mediacopier enable()

e Toignore the original path and create a new path during copy, séatise
argument ifmme mediacopier add() to MME_MEDIACOPIER_NONE.

e To preserve the original folder path for the copied media folders and files, set the
flagsargument irmme mediacopier enable()to
MME_MEDIACOPIER_PRESERVE PATH.

Folder path functionality applies only to media copy operationsripping
operations.

Using the $*PRESERVE_PATH* template strings

The$*PRESERVE PATH templates strings may only be used for copying operations.
They arenot supported for ripping operations.

These template strings:

e override the global preserve path configuration set with<treeser vePat h>
element in the MME configuration file

e must be the last templates strings in a path
e may optionally be terminated with a “/” character

e are for use on a per copy basis; they must not be used in the global default folder
name

If you use$PRESERVE PATH or $SNO_PRESERVE PATH with no additional path
information provided, the operation uses the the global default copy destination folder:

e /$NO_PRESERVE_PATHcopies to the root of the target mediastore

e / $PRESERVE_PATHbuilds the path from the source mediastore on to the
destination mediastore

$PRESERVEPATH_AFTER s used in the destination folder name to modify the
source path when it is appended to the destination folder. When it builds the
destination path, the MME copy operation searchs for and discards from the source
path the characters aftePRESERVE PATH_AFTER: (note the colon *”). It discards
characters from the beginning of the source path up to and including the characters
after$PRESERVEPATH_AFTER..

122 Chapter 12 o Copying and Ripping Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Copying and ripping media

For example, to transform the source path

/ s/ pfsO/Misic/Artist/Al buni Song. mp3 into

/copy_dir/Artist/A bun Song. np3 on the copied mediastore, you can use
either of the following destination paths:

e /copy_dir/$PRESERVE_PATH AFTER: /f s/ pf s0/ Musi c/ — explictly define
all characters to be removed from the destination path

e /copy_dir/$PRESERVE_PATH AFTER: / Musi ¢/ — discard all characters up to
an including the stated string

Setting and using ripping templates

The functionmme mediacopier add() uses the data structure

mre_nmedi acopi er _i nf o_t to set templates that define how the MME names ripped
files and where it places them in folder structures. If a ripping template is set, when
the MME rips media, it automatically names the ripped files and places them in the
locations defined by the template, building the folder structures and filling in
appropriate information based on the metadata for the ripped files.

For example, the following strings defined for the templates:

Folder / $ARTI ST/ $ALBUM

File name [$titlel

would yield (based on the metadata) the following folders and file names:
e /Katia Guerreiro/ Tudo ou Nada/ Despedi da. np3

e /Pearl Jam Ten/ Cceans. np3

e /Pearl Janm Ten/ Alive.np3

e / U2/ Joshua Treel/ Exit.np3

Usemme mediacopier add() to set ripping templates at any time before a ripping
operation and to get the template you want to use before a ripping operation. For
example, you could define one template to organize media by artist, album and title,
and another to organize media by genre, year and artist, and offer the end-user the
option of ripping media using either template. Or, your HMI could let the end-user
build additional templates and store them.

Building the copy queue

February 13, 2009

After you have set the copy or ripping mode you want to use, and how you want to
handle folder paths for media copies or the organization of ripped files, you need to
compose an SQL query statement and catie mediacopier add() with this

statement to:

e build up the list in files to be copied or ripped in the copy queue

Chapter 12 ¢ Copying and Ripping Media 123

Copying and ripping media 0 2009, QNX Software Systems GmbH & Co. KG.

Updating metadata

e tell the MME whether this is a media copy or a ripping operation
e set the destination mediastore for the operation
e forripping operations, set the target format for the media.

The example below shows how to add files to the copy queue, ensuring that there are
no duplicate entries. The SQL query could be something SUtISESECT fi d

FROM | i brary WHERE nsi d=msid nunt', wheremsid numis the mediastore ID of

the CD you want to copy, and you want to select all tracks from the CD for ripping.

/1 If none of this CD s tracks were ripped before, we nmake sure
/1 that we add themto the copyqueue.
if(init_copyqueue) {

mme_nedi acopi er _info_t info;

/1 Cear the copyqueue.
/1 We do this to prevent copying tracks nultiple tines.

nmme_nedi acopi er _clear(nme);

/1 Set up rip destination and encodi ng

info.dstfil enane = NULL;

i nfo. dstfol der = NULL; // use the defaults
info.dstnsid = 0;

i nfo.encodefornatid = 2; [l 2 is 'wav',

/1 see the 'encodefornmats’ table.

if(-1 == me_nedi acopi er _add(nme, & nfo, sqgl, 0)) {
perror("me_medi acopi er_add()");
return;

}

}

Note how in the example above, the client application caltse mediacopier clear()
to clear the copy queue before adding files to it. For more information, see “Managing
the copy queue” below.

The MME can be configured to synchronize files with inaccurate metadata before
copying or ripping them. If this option is set, when the MME prepares to copy or rip a
file, it:

e Checks theaccuratefield in thel i br ar y table for the file.

e |[f this field is set to O (the metadata is not accurate), before copying or ripping the
file, the MME synchronizes the source file so its metadata is accurate, ensuring the
accuracy of the metadata in the copied or ripped file.

To configure the MME to synchronize files with inaccurate metadata before copying
or ripping them, make sure that te€opyi ng> elementUpdat eMet adat a>in the
MME configuration file gme. conf) is set tot r ue. This is the default setting.

124 Chapter 12 o Copying and Ripping Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Managing the copy queue

Completing unknown metadata

To add specified metadata strings when metadata is not known, build the copy queue

with the functionmme mediacopier add with metadata()instead of

mme mediacopier add().

Starting media copying or ripping

To start a media copying or ripping operation, cathe mediacopier enable()
instructing it to either copy or rip the media listed in the copy queue. This function
will read through the copy queue in thepyqueue table and either copy or rip the
files, as directed.

Stopping media copying or ripping

To stop a media copying or ripping operation, galhe mediacopier disable()

Behavior when media copying or ripping encounters an error

If the MME is unable to copy or rip a file, it:

e delivers the everME_EVENT_MEDIACOPIER SKIPFID or
MME_EVENT_COPY_ERROR

e moves to the next entry in trmopyqueue table

You may want to remove entries for skipped files from ¢lo@yqueue so that the
MME does not attempt to copy or rip them the next time you begin a media copying or
ripping operation.

You can use theDel et eOnNonRecover abl eEr r or > element in the MME
configuration file to have the MME automatically delete from the copy queue entries
for files that cause unrecoverable errors.

Behavior when a mediastore is removed

If the mediastore from which files are being copied or ripped is ejected during the
operation, the MME will deliver the eveMME_EVENT_COPY_ERROR
(MME_COPY_ERROR NOTSPECIFIED and an event
MME_EVENT_MEDIACOPIER_SKIPFID event for the track being ripped, as well as

the next few tracks in the copy queue until the MME detects that the mediastore was
ejected.

When the MME detects that the mediastore was removed from the system, it delivers
the evenMME_EVENT_COPY_ERROR(MME_COPY_ERROR DEVICEREMOVED),
and removes the partially ripped file from the destination mediastore.

Managing the copy queue

February 13, 2009

Stopping a media copying or ripping operation does not affect tipg queue table.
You should ensure that your client application manages the copy queue so that you do

Chapter 12 ¢ Copying and Ripping Media 125

Modifying media metadata 01 2009, QNX Software Systems GmbH & Co. KG.

not inadvertently copy or rip files left in the queue by an earlier media copying or
ripping operation. At the start of every media copying or ripping operation, you should
call mme mediacopier clear() to remove all entries in theopyqueue table.

You can also remove specific items from the copy queue by calling

mme mediacopier remove() This feature allows you to offer the end users
functionality such as the ability to review a list of media to be copied or ripped and
add or remove individual entries as desiteforestarting a media copying or ripping
operation.

Modifying media metadata

The MME providesnme metadata set()so your client application can provide the
end-user with the ability to modify the metadata for copied and ripped media. You can
design an HMI interface that displays media metadata and accepts input of corrections
or additions from the user, then pass the input tontimee metadata set() which will

write the modified metadata to both the media file (where applicable) and the MME
database.

126 Chapter 12 o Copying and Ripping Media February 13, 2009

Chapter 13

External Devices, CD Changers and
Streamed Media

In this chapter...

Getting and setting device options 129
Working with external CD changers 133
Working with internet streamed media 133

February 13, 2009 Chapter 13 e External Devices, CD Changers and Streamed Media 127

[2009, QNX Software Systems GmbH & Co. KG. Getting and setting device options

The MME supports playing streamed media, as well as media on mediastores on
external changers. This chapter describes:

e Getting and setting device options
e Working with external CD changers

e Working with internet streamed media

Getting and setting device options

The MME supports getting and setting device option configurations, even if the MME
does not know about the options:

e Device option configuration API
e Getting and setting device configuration values

e Determining the iPod connection and capabilities

Device option configuration API

The API or getting and setting device option configurations uses the following
functions, data structures, enumerated types and events:

e mme device get config()

e mme device set config()

e MME_EVENT_MEDIA_STATUS
e nm nedi a_status_t

e mm nedia status_event t

e mm nedia status_reason_t

Getting and setting device configuration values

Themme device get config()andmme device set config()functions get and set
configuration option values for devices accessed through MediaFS. The MME does
not need to know about the options or their settings.

At present, you can ugame device get config()to get configuration values for iPod
devices and Bluetooth devices that use a Temic stackmame device set config()
to set options on iPod devices, with these constraints:

e mme device get config()returns all configuration options for a device; individual
elements or attributes camot be specified

e mme device set config()sets only one XML element attribute at a time; to set
multiple attributes, you must call the function once for each attribute

February 13, 2009 Chapter 13 e External Devices, CD Changers and Streamed Media 129

Getting and setting device options [0 2009, QNX Software Systems GmbH & Co. KG.

Supported interfaces

At present, the MME supports getting and setting interface options for two types of
interfaces:

e USB devices plugged into the system

e devices accessed through a device driver (such as, for example, a QNX resource
manager) running on the system

The<i nt er f ace> configuration element for USB devices uses the following
attribute template:

<interface type="usb" path="USB bus_nunber" devno="USB devi ce_nunber” \
vendori d="USB_vendor _i d_nunber" producti d="USB_product _i d_nunber"/>

The<i nt er f ace> configuration element for devices accessed through a device driver
uses the following attribute template:

<interface type="device" path="/fsys/path/to/devicel/resngr"/>

Getting configuration values from iPods

To get the configured settings for an iPod:

1 Reserve a buffer for the information that will be returned from the device.
2 Call mme device get config()

For example, for an iPod with the mediastore ID 2:

char buf[1000];

nme_devi ce_get _config(hdl, 2, "/", 0, sizeof(buf), buf);

The function will fill the buffer with the device information, which will be presented in
a format like the following for an iPod using USB transport:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<devi ce api _version="1">
<interface type="usb" path="1" devno="1" vendori d="0x5ac" productid="0x5ac"/>
<medi a>

<i Pod>
<capabilities>
<vi deo/ >

<di gi t al audi o/ >

</ capabilities>

<transport val ue="usb_i pod" val uetype="text"/>

<pr ef erences>
<vi deo val ue="ask" val uetype="enunt nodi fi abl e="no" alternatives="off, on, ask"/>
<screen value="fit" val uetype="enunt nodifiabl e="yes" alternatives="fill,fit"/>
<format val ue="ntsc" val uetype="enuni nodifiabl e="no" alternatives="ntsc, pal"/>
<connecti on val ue="conposite" val uetype="enunmt nodifiabl e="no" alternatives="none, com

130 Chapter 13 o External Devices, CD Changers and Streamed Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Getting and setting device options

<caption val ue="of f" val uetype="enunt nodi fi abl e="no" alternatives="off,on"/>
<ratio value="full" val uetype="enum' nodi fi abl e="no" alternatives="full,w de"/>
<subtitle value="of f" val uetype="enunt nodifiabl e="no" alternatives="off,on"/>
<audi oal t val ue="of f" val uetype="enunt nodifiabl e="no" alternatives="off,on"/>
</ pref erences>
</'i Pod>
</ medi a>
</ devi ce>

Or the following for an iPod using serial transport:
<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<devi ce api _version="1">>
<interface type="device" path="/net/groytest?2.ott.qgnx.conidev/serl"/>

<nedi a>
<i Pod>
<capabilities>
<vi deo/ >

<di gi t al audi o/ >
</capabilities>
<transport value="ser _ipod" val uetype="text"/>
<preferences/ >
</'i Pod>
</ medi a>
</ devi ce>

Getting configuration values from Bluetooth devices

Themme device get config()can be used to retrieve device configuration settings
from Bluetooth (A2DP) devices.

To retrieve this information from a Bluetooth device, simply call

mme device get config()as you would for an iPod device, but with the mediastore
ID set for the Bluetooth device. The information in buffer filled in by the call will look
something like the following:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<devi ce api _version="1">
<interface type="device" path="/dev/wrs/playerl"/>
<nmedi a>
<AVRCP>
<versi on>
<mgj or val ue="1" val uetype="nuni'/>
<m nor val ue="3" val uetype="nuni'/>
</ version>
</ AVRCP>
</ nmedi a>
</ devi ce>

February 13, 2009 Chapter 13 e External Devices, CD Changers and Streamed Media 131

Getting and setting device options [0 2009, QNX Software Systems GmbH & Co. KG.

Setting configuration values on an iPod

Themme device set config()allows you to change the iPod preferences that were
configured when the iPod driver was started. It sets configuration values by setting the
attributes for sub-elements inside ther ef er ences> attribute.

Each element inside thepr ef er ences> has the following attributes:
e value— the current setting

e valuetype— the type of setting (currently all settings are enumerated values; that
is, a choice from a fixed list)

¢ modifiable— determines if the other attributes can be changed

e alternatives— possible values for the settings

Q At present, the only element with modifiable attributesdsr een>.

To modify an iPod’s screen zoom mode:

1 Call mme device set config()with thexpathargument set to the path to the
element’svalueattribute, and theewvalueset to the desire value.

For example:

mre_devi ce_set _config(hdl, 2, "/devicel/nedialiPod/capabilities/screen@alue", "fill", 0);

Q On an iPod:

e “fill” means stretch the imageithoutaltering the aspect ratio. That is, do not
haven; that is, the image will have no vertical or horizontal black bars (no letterbox
or pillar box), but it may be cropped to make it fit the iPod screen

e “fit” means that the image isot cropped, but the image may be framed by
horizontal or vertical black bars

Determining the iPod connection and capabilities

To determine how an iPod is connected, simply oathe device get config() and in
the returned buffer with the device information, check the following elements and
attributes:

e Check the<t r anspor t > element’'svalueattribute:

- "ser_i pod" —the iPod is using serial transport
- "usb_i pod" —the iPod is using USB transport

e Check the<capabiliti es>sub-elements. For example<dli gi t al audi o>is
present, then the iPod supports digital audio.

132 Chapter 13 o External Devices, CD Changers and Streamed Media February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Working with external CD changers

Working with external CD changers
The MME includes several features that facilitate working with external CD changers:

e The constantSTORAGETYPE MEDIAFS_* support different mediastore types on
the same device.

e The enumerated typesre_node_r andomandmre_node_r epeat include values
to support random and repeat modes for folders and subfolders.

e The MME supports track changes initiated by external CD changers. When the
MME receives notification that an external CD changer has changed tracks, it:
- identifies the new currently playing track

- updates th@owpl ayi ng table with the file ID {id) and metadata for the
currently playing track

A random or repeat mode setting works only if the external device supports the
setting. If the external device does not support the requested setting, the MME logs a
warning and continues playback.

For more information about building systems that use external CD changers, contact
your QNX representative.

Working with internet streamed media

The MME supports playback of internet streamed media, including RTP streamed
media from an IP camera accessed over Qnet. Currently supported streamed formats
are:

e AAC
e MP3

Configuring the MME to support streamed media
To configure the MME to support streamed media, you must:
1 Add a rule to the MCD to detect internet connections.
2 Enable an internet slot in thed ot s table.

Add arule to the MCD to detect internet connections

To add a rule to the MCD to detect internet connections, simply add a rule to the
MME’s MCD configuration file to have the MCD look for internet connections. For
example:

[/ dev/ socket]
Cal | out
Ar gunment

PATH MEDI A PROCMGR
/ proc/ nount

February 13, 2009 Chapter 13 e External Devices, CD Changers and Streamed Media 133

Working with internet streamed media [2009, QNX Software Systems GmbH & Co. KG.

Priority = 11, 10
Start Rule = | NSERTED
Stop Rule = EJECTED

For more information about MCD rules, see “Configuring tieel utility” in the MME
Configuration Guidehapter Configuring Device Support.

Enable an internet slot in the sl ot s table

After you have configured the MCD to look for internet connections you must
configure thesl ot s table to support internet connections. For example:

| NSERT | NTO sl ot s(path, zonei d, nane, slottype)
VALUES(’ / dev/ socket’, 1, ' I NTERNET', 10):

For more information about configuring tkéot s table, see “Configuring thel ot s
table for supported devices” in tMME Configuration Guidehapter Configuring
Device Support.

Playing streamed media

If you have configured the MME to support internet connectionsydtsi ast or es
table should have an entry for an “internet” mediastore. You can check this by
querying the database from the commandline. For example:

gdbc -d mMme "sel ect nsid, slotid, nane, nount path from nmedi ast ores”
One of the returned lines should return values something like:

| 2] 13| I nternet|/dev/ socket |

Media streams cannot be synchronized, so to play it you should playefilerbased
track session:

1 Create a file-based track session by callimge newtrksession(vith the mode
argument set tMME_PLAYMODE_FILE.

2 Set the track sesssion by callingne settrksession()

3 Append the the HTTP stream by callingme trksessionappend files() with
thefilenameargument referencing to the HTTP stream.

or:

4 Append the RTP stream by callimyme trksessionappend files() with the
filenameargument set to the URL of the RTP stream from the axis camera
server on Qnet‘rtsp: //10. 42. 108. 95: 554/ npeg4/ 1/ nedi a. anp" .

5 Proceed with playback.

134 Chapter 13 o External Devices, CD Changers and Streamed Media February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Working with internet streamed media

Q The SELECT statement used to create the track session query for media Wty@zeb
(media that can be played as one file).

For example, with themecl i commandline utility, you might play streamed media as
follows:

nmecli newtrksession f "select fid fromlibrary where ftype=5 and nsi d=2"
mecli settrksession 1
nmecli trksessionview append file 1 2 http://ww. pl aysong. conf song

mecli play

February 13, 2009 Chapter 13 e External Devices, CD Changers and Streamed Media 135

Chapter 14
Working with iPods

In this chapter...

Installing MME components for external media playerd.39
Connecting to and using iPods 139
Link kit for iPod authentication 159

February 13, 2009 Chapter 14 o Working with iPods 137

0 2009, QNX Software Systems GmbH & Co. KG. Installing MME components for external media players

Y

This chapter describes:
¢ Installing MME components for external media players
e Connecting to and using iPods

e Link kit for iPod authentication

For information about how to get configuration values from an iPod device, see
“Getting and setting external device options” in the chapter External Devices, CD
Changers and Streamed Media.

Installing MME components for external media players

If you want use an external media player, such as an iPod or a PlaysForSure-enabled
device, you need to:

1 Install the runtime files that support these devices. These installations may
require special licenses.

2 Usei of s-i pod ori of s- pf s, depending on the type of media player.

For more detailed instructions, see the QN&iage Multimedia Suiteénstallation
Note

Connecting to and using iPods

February 13, 2009

This section describes how to connect to iPod devices, and how to use the MME to
interface to and manage iPods, where the behavior of iPods requires an approach
different from that used for other devices.

Required components

Authenticating iPods

e Connecting to iPods

e Detecting iPods

e Removing iPods

e Synchronizing iPods

e Playing media on iPods

e Displaying information from an iPod
e Uploading splash screens to iPods

e HD radio tagging

Chapter 14 o Working with iPods 139

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

Required components

The table below lists the non-standard components you need to connect to and use
iPod devices from a QNX system:

Component Serial USB Description

Licenses Yes Yes See “Licenses”
below.

Authentication chip Recommended Yes See “Authenticating
iPods” below.

deva-ctrl-ipod.so Depends on configuration Yes The iPod audio
driver.

i o-fs-nedia Yes Yes The media
filesystem.

i of s-i pod. so Yes Yes The iPod driver.

i of s-ser-ipod. so Yes No The serial transport.

i of s-usb-i pod. so No Yes The USB transport.

i of s-i 2c-i pod. so If using chip. Yes The i2c interface to
the Apple

authentication chip.

See also th&IME Utilities Referencdor detailed information about the relevant
drivers and transports.

Licenses
Special licenses are required to access and use iPod devices. Please contact Apple to
obtain the licenses needed for your environment.

Authenticating iPods

Two methods are available for authenticating iPod devices:
e an authentication chip on your system

e a cross transport authentication chip in the cable connecting the iPods to your
system

Apple authentication chip

An Apple authentication IC chip is required for USB transport connections, and is
highly recommended for serial transport connections. An Apple authentication IC
chip ensures:

e full functionality of Apple current devices — for examplgithoutan
authentication IC chip:

140 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

- iPods do not have access to video browsing and digital audio
- iPhones report the message: “Accessory unsupported”

e compatibility with future Apple devices

The QNXi of s-i 2¢c-i pod. so module allows the QNX iPod driver to access the
authentication chip using a standard i2c driver. If you do not install the authentication
chip as a standard i2c device, you must write a custom module that gives the QNX
iPod driver access to the chip. For more information, see “Link kit for iPod
authentication” below.

To instruct the iPod driver to use this authentication method, istéirg- i pod. so
with the theacp option set ta 2c and its options:

io-fs-nedia -di pod, transport=usb, acp=i 2c[: optiong

Cross transport authentication

A cross transport authentication chip can be built into the cable connection iPods to
your system. This authentication method is available for USB transport connections
only; it authenticates iPods over the serial pins and tell the iPods to grant authenticated
privileges to the USB transport.

As well as offering the same advantages as an authentication chip built in to your
system, a cross transport authentication chip in a cable:

e places the authentication chip in a swappable cable rather than on a board
e eliminates the need for the iPod driver to perform authentications

Please contact Apple for more information about licenses and specifications for a cross
transport authentication chip.

To instruct the iPod driver to use this authentication method, istdirs- i pod. so
with the theacp option set tact a:

io-fs-nmedi a -di pod, transport=usb, acp=cta

Connecting to iPods

February 13, 2009

You can connect from a QNX system to any iPod device (including an iPhone) with an
Apple 30-pin connector. You can connect to these devices through a QNX serial
device (“2-wire” connection) or a QNX USB device (“1-wire” connection).

You can connect to newer iPods (Generation 5 and more recent) either through a serial
connection or, with an Apple authentication chip, through a USB connection. Older
iPods (Generation 4 and older) support only the serial connection.

Before designing your client application, you should contact:

e Apple to obtain the specifications for cables supporting the serial protocol, and the
required authentication IC chip and associated licenses

e QNX for more information about your requirements for iPod devices

Chapter 14 o Working with iPods 141

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

Accessing iPods as USB devices

Some iPods support USB connections as mass storage devices; when accessed in this

way they look like hard drives. Older iPods and iPod Shuffles can be accessed only as

USB storage devices:

e iPod Shuffles do not have an Apple 30-pin connector; they use a USB connector
and present themselves as USB mass storage devices.

e IfaniPod that is accessed as a USB mass storage device (older models and
Shuffles) uses a file system that can be mounted onto a QNX system (for example,
DOS), the MME can play the iPod’s contents just like it plays the contents of any
USB mass storage device. However, the MME cannot access the contents of iPod
that use a proprietary Apple file system (iPod’s that have been formatted on an
Apple computer).

Apple devices that support digital audio

At time of this MME release, the following Apple devices supported digital audio:

M odel Firmware*
iPod nano 1G 1.2.0
iPod nano 2G 1.1.2

iPod nano 3G 1.0
iPod 5G 1.2
iPod classic 1.0
iPod touch 11
iPhone 1.1

*Firmware listed is the minimum required.

A very small number of iPods with outdated firmware may present themselves as
supporting digital audio, when in fact they do not support it.

If an iPod falsely presents itself as supporting digital audio, the launcher has no way of
telling that the presentation is false. It will launch the digital audio driver, not the

driver for a USB storage device, and the MME will be unable to play media or do
anything with the iPod.

You should therefore design your client application to detect this sort of situation and
alert the user so he or she can intervene and mount the iPod as a USB mass storage
device.

142 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Connecting through a serial device

When you connect to iPod devices through a serial device, the connection uses an
iPod-specific protocol.

The iPod-specific protocol is used regardless of the type of physical layer used for the
connection. A serial device can be a serial port (such as a 16550), a USB-to-serial
class driver, or any other interface that presents a serial device.

For this type of connection, you can manufacture a serial to USB iPod cable to easily
connect iPods into any USB port on an existing system. This cable should have an
iPod 30-pin connector at one end, a USB connector at the other end, and a USB to
serial chip inside the cable.

The iPod driveii of s-i pod. so and the serial transpoirbf s- ser -i pod. so
together support the serial protocol required to communicate with iPods.

Q e Serial connections to iPods are sometimes referred to as “2-wire” connections.

e When you connect to an iPod through a serial device you must route the audio to
the appropriate location in the system.

Two-wire connections

Serial connections to iPods use two wires:

e The first wire provides a serial interface from the host to the iPod’s dock interface.
This wire is used to send control over the serial interface. USB to serial converters
(devc- ser usb) may make this interfaceppearto be a USB interface, but it is in
fact a serial interface.

e The second wire provides analog audio, just like a headphone jack. This wire can
be connected:

- directly to speakers
- directly to an amplifier

- to ani o- audi o managed audio device, which is in turn managed by the MME
andi o- nedi a

All three configurations for the second wire above are valid.

If you choose to bring the analog audio into- audi o and have the MME manage it,
you need to:

e run the audidn line to a sound card capture device

e use the iPod serial transpottof s- ser - i pod. so) audi o option to set the URL
to the location wheréo- nedi a can read the audio data

February 13, 2009 Chapter 14 o Working with iPods 143

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

If you do not bring the audio intbo- audi o, the MME can receive time position
updates and track changes from the iPod through the control lines, but it cannot
control volume, mute or other functionality on the iPod.

Hardware requirements for serial connections to iPods

When designing a system that will use a serial interface to iPod devices you must
ensure that the hardware on your system:

e supports analog audio input

e has sufficient CPU to move data around

e has sufficient CPU to perform sample rate conversion at output, or that hardware

and drivers support conversion in the hardware

Connecting through a USB device

When you connect to iPod devices on a USB bus, the connection uses an iPod-specific
USB protocol.

To connect to iPod devices and communicate with them through a USB connection,
you need:

the USB device enumeratasnum usb that presents USB devices to the system
the iPod driveri of s-i pod. so

the USB transporti of s- usb-i pod. so that supports the USB protocol required
to communicate with iPods

an Apple authentication chip

the driver for the Apple authetication chipof s-i 2c-i pod. so, or a custom
driver

the audio driveri o- audi o

the audio driver for iPodsdeva-ctrl -i pod. so

Q .

USB connections to iPods are sometimes referred to as “1-wire” connections.

When you connect to an iPod through a USB device you must also launch a USB
audio driver for the iPod.

One-wire connections

USB connections to iPods use one wire:

The wire used for one-wire iPod connections has a USB connector on the host end
and an iPod dock on the iPod end.

144 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Starting the drivers

February 13, 2009

e Control packets are sent across this connection astiSRBommands.

e The iPod sends audio digital PCM data across the USB connection isochronously,
which decodes the music to the host.

e The host useso- audi o andi o- nedi a to handle the PCM data.

To use iPod devices, after you obtained the required licenses, cable and authentication
chip, follow the instructions in thinstallation Noteprovided with your QNX Aviage
Multimedia Suite package, and install the following software components onto your
system:

e deva-ctrl-ipod.so
e io-fs-nedia
e iofs-ipod.so

e iofs-ser-ipod. so,for serial connectins

i of s-ush-i pod. so, for USB connections
e iofs-i2c-ipod.so,oracustom driver, as required
e enum ushb, for USB connections

After you have installed the required components, to connect from a QNX system to
an iPod device:

1 Starti o- usb, specifying the ¢ option and the driver.

2 Starti o- f s- nedi a, specifying the device, the transport (serial or USB, as
required) with either the path to the device or the device name, the
authentication chip interface with the address, path and speed for the connection
to the chip, other options as required. For example, to connect to an iPod on the
default serial port and using the authentication chip, stauf s- medi a as
follows:

io-fs-nedia -dipod, transport=ser, acp=i 2c

3 If your system is configured to us®- audi o, start it. See “Starting
i 0- audi 0” below.

4 Physically connect an iPod device to your system.
Below is a sample startup:

10-usb -c -duhci -dehc

i o0-audi o -di pod busno=0, devno=1, cap_nane=i pod-0-1

io-fs-nmedia -dipod, \
t ransport =ush: devno=1: busno=0: sconfi g: audi o=/ dev/ snd/i pod-0-1, \
dar at es=+8000: 11025: 12000: 16000: 22050: 24000, \
pl ayback, acp=i 2c

Chapter 14 o Working with iPods 145

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

e Thei o- ush may use the EHCI, OHCI or UHCI driver, as required.

e Thei o- usb - c option is needed to instrucb- usb notto select the iPod
configuration.

e Thei o-fs-nedi aiPod transport'sconf i g option selects the USB
configuration. You can omit it if you use a launcher that selects the USB
configuration.

See theMME Utilities Referencéor more information about the iPod driver options
and default values, aricb- usb in the Neutrino Utilities Referenctor more
information about o- usb.

i o-fs- nedi ais single threaded, so you need to start a separate instance of the
filesystem for each device to which you want to connect.

Starting i 0- audi o

All USB connections and serial connections that route audio through the MME require
i 0- audi o. If you system configuration requiré®- audi o, you should start it before
physically connecting an iPod device.

When you start o- audi o, you need to specify:
e busno — the USB bus number
e devno — the iPod device number

e cap_nane — the name given to the capture device; you must pass the path to the
capture device to thieo- f s iPod driver through itaudi o option so that
i o- medi a will know where to read the audio data

For example:

i 0-audi o -di pod busno=0, devno=1, cap_nane=i pod-0-1 &

For more information abolito- audi o and its options, seieo- audi o in the Neutrino
Utilities Reference

iPod one-wire: from connection to playback

The figure below shows the sequence of activities from the insertion of an iPod
through a USB connection to playback:

146 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

February 13, 2009

Y

HMI

@ e B

mcd @—) mme

I @
@ /fs/ipod0
e io-media
: A
io-fs-media Do
>l —> . HQJ =
A . Digital
: v audio
Digital ' iPod is leo—audie < Lo
audio ' inserted ® "4 gevaseirl-fpos. DN 1
| A v
e @ N P
--»| USB bus I io-audio
io-usb |« enum-devices :
A A : Digital :
; audio co
4@—) enum-usb 1 o
Select configuration f B
~ Digitalaudio

Activities sequence after iPod connection through USB transport.

1 The launcherdnum usb) sees the iPod, then sends the device information,
such as vendor ID and device ID,éaum devi ces, which uses this
information to determine the driver it must launch.

enum devi ces launches o-f s- medi a i pod and ani o- audi o instance.
i o-fs-nedi a i pod places the iPod in the filesystemt s/ i pod0.

nmcd notices the appearance/dfs/ i pod0 in the filesystem, and notifieare.

g b~ W N

me writes iPod information in its database througdb, and notifies the HMI
that the iPod is present.

6 The HMI explores the iPod, then askse for playback of some tracks on the
iPod.

Chapter 14 o Working with iPods 147

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

7 mme tellsi o- medi a to start playback on the iPod.

8 i o- medi a tells the iPod to start playback, and routes the digital audio from the
iPod to the speakers through a secondaudi o instance.

Checking for optimal connections

To check it an iPod is using the optimal available connections, you can examine the
capabilitiesfield for the device in theedi ast or es table:

e Check for the capabilitfyyME_MSCAP_CONNECTION NONOPTIMAL
(0x00040000) to determine if the iPod is using a USB (1-wire) or a serial (2-wire)
connection for controIMME_MSCAP_CONNECTION NONOPTIMAL is setifita
serial (non-USB) connection is used for control.

e Check for the capabilitfyyME_MSCAP_AUDIO_NONOPTIMAL (0x00080000) to
determine if the iPod is using an analog or digital audio connection.
MME_MSCAP_AUDIO_NONOPTIMAL is set if an analog audio connection is
being used.

Q The MME_MSCAP_*_NONOPTIMAL flags apply only to iPods that are capable of
playback and control via USB connections as well as serial and analog connections.
For early iPods models, which only support serial and analog connections, a 2-wire
connection is “optimal”, as it is the only one possible.

For a full list of possible mediastore capabilities values,B¥E_MSCAP_* in the
MME API Library Reference

Detecting iPods

When the MME detects an iPod, it updates itieeli ast or es table just as it does with
other types of mediastores. It sets Hterage typecolumn in themedi ast or es table
to the mediastore typ®ME_STORAGETYPE IPOD, and it updates thiol der s

table with the root folder information for the iPod.

After receiving alMME_EVENT_MS_STATECHANGEevent withnme_ns_st at e_t
indicating a newly inserted mediastore, to check if the mediastore you are working
with is an iPod, you can check this column in thedi ast or es table for the presence
of an iPod. TheSELECT statement below shows how to check for an iPod:

gdb_statenent (db, "SELECT 1 FROM nedi ast ores
WHERE nsid = %1 d AND storage type = %; ",
event . data. nsi d, MVE_STORAGETYPE | PCD);

Removing iPods

When you have finished playing media from an iPod, you do not need to disconnect it
from the MME. Just physically remove it from the system. Note, however, that when
an iPod is removed from the system, the MME removes the iPod content from its

148 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

database — it maintains an entry for the iPod inriedi ast or es table and an entry
for the iPod root folder in théol der s table, but the content of the iPod “disappears”
from the system.

This MME behavior is specific to iPod devices and is implemented because it isn’t
possible to quickly determine if any changes were made to an iPod device between its
removal from the MME system and its re-insertion: the MME needs to resynchronize
the iPod to ensure the accuracy of its data.

Synchronizing iPods

The MME supports synchronization of media on iPod devices. The design of iPod
devices imposes some constraints on how the MME performs synchronizations on
iPods. If the default configurations for iPod synchronizations are used:

e The MME never automatically synchronizes an iPod. The client application must
request synchronization.

e If the client application requests full, recursive synchronization of all media on the
iPod device (by callingnme resync mediastore(), the MME performs
synchronization via the pathvusi c/ Genr es/ , then repeats the process via the
pathMusi ¢/ Songs/ .

To improve the browsing of iPods, the MME updatestfitie field during the first
synchronization pass. This behavior is unique to iPod synchronizations.

To synchronize an iPod, you should use the directed synchronization function
mme sync directed() specifying the path where you want to begin synchronization.
For more information, see “Directed synchronization” in the chapter Synchronizing
Media.

We don’t recommend that you use the standard synchronization function

mme resync mediastore(Xo perform a full, recursive synchronization of all media on

an iPod device, due to the size of iPod databases, duplicate files on iPods, and the slow
interface between the MME and these devices.

Configuring MME iPod synchronizations

February 13, 2009

You can configure:

e the maximum number of folders containing files allowed in the MME database by
setting thdimit attribute for the .4i pod>/<synced_f ol der s> option in the
MME configuration file

e the MME to automatically synchronize iPods, and to synchronize the complete
contents of iPods

For more information, see “Configuring MME iPod synchronization” in KilelE
Configuration Guide

Chapter 14 o Working with iPods 149

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

Playing media on iPods

An iPod manages its own:
e track sessions
e repeat and random modes

These characteristics place some constraints on what the MME can do with these
devices, and they determine client application behavior when working with these
devices. Specifically, iPods require special consideration when working with track
sessions, when resuming playback, and when using random and repeat modes.

For information about how to check mediastore and device capabilities, see
“Mediastore and device capabilities” in the chapter Working with Mediastores.

Rules for playing media on iPods

To avoid unexpected behavior, follow the rules listed below when playing media on
iPods. For more detailed information, see the relevant sections below.

e An MME track session should contain only ofie per iPod. If the track session
spans multiple iPods, include only ofié per iPod.

e To move to the next or previous track in the MME track session (in the
t r ksessi onvi ewtable), call themme next()andmme prev() functions

e To move to the next or previous track in ti®d track session, cathme button()
with nm but t on_t set toMM_BUTTON_NEXT or MM_BUTTON_PREYV, as
required.

Working with track sessions when using iPod devices
To play media on an iPod, call the same functions as for other devices:
e mme newtrksession(jo create the track session
e mme settrksession(fo set the track session
e mme play() to start playback

However, because iPods manage their own track sessions, when you use the MME to
play media on these devices, you in fact have two layers of track session:

e the MME track session
e the track session on the iPod

These two layers of track sessions mean that, once the MME has started playback on
an iPod, unlike devices that do not manage their own track sessions, the iPod continues
playback on its own. When it reaches the end of a track, the iPod starts playback of the
next entry in theéPod track session, and continues until it either comes to the end of its
track session, or the client application tells it to stop by caltimge stop()

150 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

This behavior means that if you place multiple file IBigl§) from an iPod in an MME
track session, playback will:

1 Start at thefid on the iPod.

2 Continue playback through every track in the iPod’s track session before
returning to the MME track session.

3 Start at the nexfid in the MME's track session.

4 If this fid is on the iPod, continue from thfsd through every trackin the iPod’s
track session, and so on.

For example, if an iPod folder has five files, and you create a track session for an iPod
using aSELECT statement, such &ELECT fid FROM | i brary WHERE

f ol deri d=x, that is appropriate for other devices, you would place all five tracks

from the folder (A, B, C, D, E) in the MME track session. Assuming that the iPod
repeat and random modes are off, this MME track session would, in fact, play 15
tracks on the iPod, as follows:

., D, E
E

mooOw
mo O

mooOw>

To prevent the situation described above and to avoid unintentional repetition of iPod
track sessions, when using iPods, place onlyfahfrom the iPod in the MME track
session.

The tables below describe playback behavior of two MME track sessions. The first
table shows an MME track session with multifids from an iPod (not

recommended). The second table shows an MME track session wifidgrer iPod
(recommended). Theequentialids from thet r ksessi onvi ewtable; it is thefid for
playback in sequential mode. Both examples assume that random and repeat modes
are off.

Not recommended: more than 1 fid per iPod

Mediastore sequentialid nowpl ayi ngfid Behavior

HDD

iPod 1

February 13, 2009

12

16

12 1. Playfid 12.
2. Move to the nexsequentialidentry in the
trksessi onvi ewtable.

0 1. Playid 16 on iPod 1.
2. Play all other tracks aftdid 16 in the iPod track session.
3. Move to the nexsequentialidentry in the
t rksessi onvi ewtable.

continued. ..

Chapter 14 o Working with iPods 151

Connecting to and using iPods

[0 2009, QNX Software Systems GmbH & Co. KG.

Mediastore sequentialid

nowpl ayi ngfid

Behavior

iPod 1 17

USB1 23

Mediastore sequentialid

Recommended: 1 fid per iPod

nowpl ayi ngfid

1. Playid 17 on iPod 1.
2. Play all other tracks aftdid 17 in the iPod track session.
3. Move to the nexsequentialidentry in the
t rksessi onvi ewtable.

1. Playid on USB 1.
2. Move to the nexsequentialidentry in the
trksessi onvi ewtable.

Behavior

HDD 12

iPod 1 17

iPod 2 96

USB 1 23

152

Chapter 14 ¢ Working with iPods

1. Playfid 12.
2. Move to the nexsequentialidentry in the
trksessi onvi ewtable.

1. Playid 17 on iPod 1.
2. Play all other tracks aftdid 17 in the iPod track session.
3. Move to the nexsequentialidentry in the
t rksessi onvi ewtable.

1. Playid 96 on iPod 2.
2. Play all other tracks aftdid 96 in the iPod track session.
3. Move to the nexsequentialidentry in the
t rksessi onvi ewtable.

1. Playid on USB 1.
2. Move to the nexsequentialidentry in the
t rksessi onvi ewtable.

February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Q e If you created your MME track session to play tracks exclusively from the iPod, it
should have only onfid and you can start playback by callingme play() with the
fid argument set to O (zero).

e If your MME track session includes tracks from iPaatsd from other devices and
mediastores (CDs, USB sticks, etc.):

- If you want to play only the tracks on the iPod, you must cathe play() with
thefid argument set to thied for the track in the iPod track session where you
want to start playback.

- If you want to play all tracks (from the iPod, and from other devices and
mediastores) in the track session, you canmaie play() with thefid argument
set to O (zero) to start playback from the first track in the MME track session.

Getting track information when playing media on iPods

An iPod sends back to the MME metadata such as track title and artist, which the
client application can display to the end-user. However, because iPods manage their
own track sessions, the MME has no way of knowing information that the iPod
doesn’t report, such as the filename or the file ID of the currently playing track in the
iPod track session. These constraints mean that if playback is on an iPod:

e The MME sets the fid in the nowplaying table to 0.

e Thefid (me_event _dat a_t.trackchange. fi d) delivered with the
MME_EVENT_TRACKCHANGE event is the file ID listed in the MME track
session gequentialidl.

e mme play_get info() reports the currently playinfid listed in the MME track
sessiongequentialig, and theMME_PLAYSUPPORT * flags. It does not have
access to the file ID or file name, etc. in the iPod track session.

If you want to know if a track is playing on the iPod track session, you can:

e Check theMME_PLAYSUPPORT DEVICE_track sessiofilag to see if the device is
an iPod.

e Check thdid in thenowpl ayi ng table for 0, which means the track currently
playing is on the iPod.

Getting the time position when playing media on iPods

When playback is on an iPod, the MME reports the playback time position just as it
does when playback is on other devices. Note, however, that iPods usually deliver
events every 500 milliseconds. If the MME notification interval is less than 500
milliseconds (the default setting is 100 milliseconds), client applications that rely on
delivery of time events from an iPod may see jitter in time-position reporting. For
more detailed information, seeme set notification interval() in the chapter MME
API.

February 13, 2009 Chapter 14 o Working with iPods 153

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

Moving through an iPod track session

Y

To move to the next or previous track in an iPod track session, caththe button()
function with thebuttonargument set tM_BUTTON_NEXT or
MM_BUTTON_PREYV, as required.

Manage trick play behavior and modes in the same manner as for other devices, with
calls to functions such asme play_set speed(}o fast forward, reverse, pause, etc.

MM_BUTTON_NEXT andMM_BUTTON_PREVare the onlynme button()settings
supported by iPods.

Fast forward and reverse on iPods

Y

Fast forward and reverse, and reporting of the current speed is implemented differently
on iPods than on most other media devices:

e iPods do not report their current playback speed. Queries for their playback speed
always return a nominal 1000, but this value should not be considered accurate.

e During fast forward or reverse, an iPod continuously increases speed until it
reaches the beginning or end of a track, at which time it resets to normal speed.

Thedanpi ng_audi o_wri t er filter has not effect on iPods because these devices
control their own trick play behavior.

Resuming playback on iPods

The MME doesn’t have access to detailed track session information on devices, such
as iPods, that manage their own track sessions. This limitation means that when the
MME creates a track session for media one of these devices, it simply:

e passes information, such as play time and metadata, from the device to the client
application

e passes commands to the device
If you want to stop, then resume playback of a track session on an iPod, you must:

1 Do whatever action the user requests: pause playback, switch to another activity,
note that the device has been disconnected from the system, etc. The device is
responsible for saving the state of track session.

2 Call mme play_resume msid()to resume playback of the track session. This
function creates a new MME track session, and the device is responsible for
resuming playback from the point where it was stopped.

154 Chapter 14 e Working with iPods February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Q Calling mme play_resume msid()when the iPod device itself is in a stopped state
will not resume playback, because a stopped iPod has no active track session that can
be resumed.

mme_play_set_speed() Unplug device, stop system, etc.
Other activities

v

mme_resume_set_msid()

Stopping and resuming a device-controled track session.

CAUTION: A call to mme play() stops playback aftenme play resume msid()has
been called, becauseme play() finds no playable tracks in the MME track session.

The only exception to this behavior occurs when the user has browsed the iPod and
requests playback of a specific folder’s contents: Artist, Genre, etc. In this case, the
client application should create a new MME track session witHitheequested by the
user, and usenme play() to start playback on that track session.

Using random and repeat modes on iPods

An iPod maintains its own random and repeat modes. The MME works with this
characteristic and behaves as follows with iPod devices:

e Calling the following functions “pushes down” the random and/or repeat modes
from the MME track session and sets them on the device:

- mme play()
- mme setrandom()
- mme setrepeat()

e Callingmme play_resume msid()“pulls up” the repeat and random modes from
the device and sets them on the MME control context and track session.

Remember that:

e New track sessions inherit the repeat and random modes from the control contexts
in which they are created.

e If you re-use an old track session, this track session keeps its random and repeat
modes and passes them to the control context in which it is being used.

e Not all devices accept all random and repeat modes supported by the MME.

February 13, 2009 Chapter 14 o Working with iPods 155

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

Y

e After a call tomme play_resume msid() you should wait for the
MME_EVENT_PLAYSTATE event with theplaystateset to
MME_PLAYSTATE_PLAYING before querying the device or setting the random and
repeat modes.

With all versions (up to 1.1 as of this writing) of the iPhone and iPod touch, the
following behavior has been observed:

e Arequest to set the repeat mode to repeat single takes effect on the next track, not
on the currently playing track.

e When repeat single mode is set, it is not possible to turn repeat mode off: the MME
repeat mode is turned off as expected, but the iPhone remains in repeat single mode.

To correct this behavior, remove the iPhone or iPod touch, then re-insert it into the
system.

Seeking chapters on iPods

To seek to a chapter on an iPod, simply cafhe seek title_chapter()as you would
to seek to a chapter on a DVD-video. When the chapter changes, the MME will
deliver the evenMME_EVENT_MEDIA_STATUS.

Similarly, to get the number of titles and chapters in the current track, and the
currently playing title and chapter numbers, nsee get title_chapter()

For more information, see “Starting playback from a specific DVD title and chapter”
in the chapter Playing and Managing Video and DVDs.

Setting subtitles on iPods

To set subtitles on iPods and to get subtitle information from iPods, use the
mme video _get subtitle info() andmme video _set subtitle()functions like you
would for other devices that support video.

For more information, see “Managing video attributes” in the chapter Playing and
Managing Video and DVDs.

Displaying information from an iPod

Thei of s-i pod presentation alters filesystem names of folders and files. Characters

are substituted to allow for leading “.” (periods), embedded spaces and so on. In
addition,i of s-i pod adds an index number, prefixed by a “™.

The MME corrects these names when it places them in database columns, sitleh as
that are not filesystem names, and when it builds pseudo-metadata for the
library genres,library artists,andlibrary_al buns tables.

Further corrections to how information from an iPod is displayed must be handled by
the client application. An iPod uses URL encoding in name strings, so a string such as

156 Chapter 14 e Working with iPods February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Connecting to and using iPods

“Folk/Rock” will display as “Folk%2FRock” to the end user, unless the client

application decodes it.

Common URL encoding strings that need to be decoded from their hexadecimal
values before displaying them to the end user are listed in the table below:

Character Encoding

#

$
%
&

2
@

Retrieving artwork from iPods

%23
%24
%25
%26

%2B
%2C
%2F
%3A
%3B
%3D
%3F
%40

Retrieval of artwork from an iPod is limited to the artwork for the currently playing

iPod trackonly.

To retrieve the artwork for the currently playifigod track, use the MME's
Load-on-Demand metadata extraction APl as you would to retrieve metadata from any
other device. That is:

1 Callmme mme metadata create session(}o create a metadata session.

2 Use themme metadata getinfo_current() function to get the artwork
information.

3 Call mme metadataimage load() to load the artwork.

February 13, 2009

Chapter 14 o Working with iPods 157

Connecting to and using iPods [0 2009, QNX Software Systems GmbH & Co. KG.

Q e The MME supports iPod artwork in color only; it does not support grayscale iPod
artwork.

e iPod images are BMP files.

e Due to a hardware limitation of 3G iPods, the MME does not support splash screen
loading for these devices.

For more information about metadata sessions for the Load-on-Demand metadata
extraction API, see “Getting artwork” in the chapter Metadata and Artwork.

Uploading splash screens to iPods

You can upload color or greyscale splash screen images to iPod devices when you start
the iPod drivet of s-i pod. so. For more information, see “Splash screens” on the
MME Utilities Referencgage fori of s-i pod. so.

HD radio tagging

Client applications that support HD radio tagging for iPods can do so when running
the MME. To implement radio tagging:

e Starti o-f s- medi a with thest or age option to turn on HD radio tagging support;
for example# i o-fs-nmedi a - di pod, st or age,

e Simply pass instructions directly tm- f s- nedi a, which passes the instructions
on to the iPod. The next time the iPod is plugged into a system with iTunes, iTunes
will pick up the radio tags.

Q HD radio tagging requires authentication.

Below is an example of code that can be used to write HD radio tags to an iPod. Your
client application should be designed to manage writing to more than one iPod
(/i pod0,/ipodl, etc.).

#i ncl ude <sys/dcnmd_nedi a. h>

if((fd = open("/fs/ipodO/.FS info./control, O RDW)) == -1) {
printf("Failed to access ipod");
} else {
rc = devctl (fd, DCVMD_MEDI A | POD_TAG, plist_single, plist_single_len, &et);
if (rc ==0)
printf("ltens were witten, only i Tunes can confirmcontents");
el se
printf("Wite of tag file to iPod failed err:%l (%): ret:%l", rc, strerror(rc), ret);

158 Chapter 14 ¢ Working with iPods February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Link kit for iPod authentication

Q e plist_singleis the pointer to the XML tag; see the Apple documentation.

e Thedeuvctl() retargument returns the number of bytes written to the iPod.

iPods that support HD radio tagging
At time of this MME release, the following iPod models supported HD radio tagging:

M odel Firmware*
iPod nano 3G 1.0
iPod 5G 1.2.3
iPod classic 1.0

*Firmware listed is the minimum required.

Link kit for iPod authentication

This section describes the MME link kit for building a customized iPod ACP
(Authetication CoProcess) module for use with Apple authentication chips.

e About the iPod authentication link kit
e The iPod ACP module

e Using the custom iPod ACP module

About the iPod authentication link kit

The MME includes thé of s-i 2¢-i pod. so module that allows the QNX iPod driver

to access the iPod authentication chip using a standard i2c driver. Due to the multitude
of possible target board configurations, this module may require modification in order
to give the QNX iPod driver access to the Apple authentication chip in your
environment.

The MME link kit for iPod authentication is provided to assist you in developing any
custom authentication coprocessor communication modules you require. It includes
the source code for the samplef s-i 2c-i pod. so module, which you can use as an
example and modify as needed.

February 13, 2009 Chapter 14 o Working with iPods 159

Link kit for iPod authentication 0 2009, QNX Software Systems GmbH & Co. KG.

The sample iPod ACP module

The iPod ACP module is a plugin to the iPod driver. It allows the higher-level driver to
communicate with the Apple authentication chip without worrying about the hardware
specifics of the board on which it is running.

The sample iPod ACP module provided is a generic i2c implementation, which can be
modified and implemented with many, different custom transport mechanisms. It
contains the complete framework required for iPod ACP modules. You only need to
modify its hardware and transport sections to meet the specifications for the ACP you
will use.

Before compiling and using the sample iPod ACP module, you must:
e have a board on which you can perform your tests

e install the BSP package you will use (witlv i 2c. h and relevant drivers)

iPod ACP module functions

ipod_i2c_addinfo()

ipod_i2c_cpready()

The sample functions provided with the authentication link kit are describe below.You
can modify these functions to meet the needs of your environment, maintaining the
specified behaviors and return values. For more detailed information about these
functions, see the source filegp_i 2c. c.

Unless otherwise noted, on failure these functions return -1 aretiset

Theipod _i2c_addinfo()is useful for debugging. It adds information, as instructed, to
the debug/information XML file created when an iPod filesystem is mounted. This
function adds any requested informatiom into the XML file’s i2¢ section, or any other
section of the file, as required.

If the generic iPod driver needs to check tle READY signal, it can call the
ipod_i2c_cpready()function.

This sample function returns the state of ¢/e READY signal:
e 0 — not ready
e 1 —ready

If this function is not implemented, it returf&@NOSYS

Checking for aCP_READY signal is not required for Apple 2.0 rev B authentication
chips; new designs should use this chip or a newer chip.

160 Chapter 14 e Working with iPods February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Link kit for iPod authentication

ipod_i2c_init()

ipod_i2c_lock()

acpl ock

February 13, 2009

Wheni o- f s- nedi a with an iPod driver is started, the iPod ACP module’s
initialization function is called. This function should:

e parse any command-line options needed for the module

e open and initialize its connection to the Apple authentication chip

The initialization functionjpod _i2c_init(), provided with the sample module:
e parses the options for

- ani2c resource manager path
- thei2c bus speed
- the address on the i2c bus

e 0pens a connection to the i2c resource manager

e sets the necessary bus speed, keeping the connection open

Theipod i2c_lock() locks and unlocks access to an ACP chip so that multiple iPod
drivers can run concurrently, sharing access to a single ACP chip. The generic iPod
driver for i2c calls this function with a thieck parameter set to a value defined by
acpl ock.

Whenipod i2c_lock() is called with its lock parameter setACP_UNLOCKED, it

tells the ACP chip that it is not needed until further notice. This call can return
ACP_PWROFF, which tells the generic ACP code to power down the ACP chip by
writing the appropriate commands to the chip’s registers. When the generic code
finishes telling the ACP chip to power down, it call®d i2c_lock() again, this time
passing itACP_PWROFFto indicate that the chip power down processing has
completed.

The enumerated valus pl ock defines the lock settings used by the ACP module.
These settings are:

e ACP_UNLOCKED — unlock the ACP

e ACP_SHARED— starting to use the ACP, but only sending atomic commands; no
response expected, so an exclusive lock is not required

e ACP_EXCLUSIVE — starting a challenge-response sequence; locking is required to
exclude other o- f s- medi a i pod instances until a response is received

e ACP_PWROFF— generic power down processing done

Chapter 14 o Working with iPods 161

Link kit for iPod authentication 0 2009, QNX Software Systems GmbH & Co. KG.

Waiting for
ACP_UNLOCKED

—

ACP_EXCLUSIVE

Authentication chip

Two iPods sharing an authenitication chip.

ipod_i2c_read() and ipod_i2c_write()

Theipod i2c_read()andipod i2c_write() functions read and write data from and to
an Apple authentication chip. They return the number of bytes read or written.

The parameters for these functions include:
e the register address on the chip at which to read or write
e a pointer to the buffer for data read in, or with the data to write

e the number of bytes of data to read or written

Using the iPod ACP module

After you have added all your device-specific code to your custom iPod ACP module,
you can build it, then usieo- f s- medi a to load it.

Building the module

You can build the iPod ACP module as follows:

1 Copy the sample modules to your home directory:
cp -R SQNX_TARGET/ exanpl es ~/ exanpl es

2 In your home directory, make and install the module:

cd "/ exanples/io-fs/drvr/ nedialipod/acp/i2c
make install

To build all sample modules, you can make them from™thexanpl es/ i o-f s
directory, as follows:

cd “/exanples/io-fs
make install

162 Chapter 14 e Working with iPods February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Link kit for iPod authentication

Starting the module

February 13, 2009

You can usé o- f s- nedi a and the iPod driver to load your module. For example:

io-fs-nedia -di pod, transport=usb, acp=nodul enane

You can also pass options to the module, as follows:

io-fs-nmedia -di pod, transport=usb, \
acp=acp_nodul enane: pat h=/ sanpl e/ pat h: opti on2=soneopt i on

For a list of options available with the ACP sample module,is&es-i 2c-i pod. so.

Chapter 14 o Working with iPods 163

Chapter 15

February 13, 2009

Working with PFS Devices

In this chapter...

Installing MME components for external media playerd67
Directed PFS device startup 167

Detecting and synchronizing PFS deviced67
Playing media on PFS devices168
Devices that don't suppo@et Par ti al Obj ect 170

Chapter 15 o Working with PFS Devices 165

0 2009, QNX Software Systems GmbH & Co. KG. Installing MME components for external media players

This chapter describes how to use the MME to synchronize and play media on
PFS-enabled devices:

Installing MME components for external media players

Directed PFS device startup

Detecting and synchronizing PFS devices

Playing media on PFS devices

Devices that don't suppo@et Parti al Qoj ect

See also of s- pf s. so in the MME Utilities Referenceand User-specified MTP
commands to PFS devices in thBME Technotes

Installing MME components for external media players

If you want use an external media player, such as an iPod or a PlaysForSure-enabled
device, you need to:

1 Install the runtime files that support these devices. These installations may
require special licenses.

2 Usei of s-i pod ori of s- pf s, depending on the type of media player.

For more detailed instructions, see the QN&iage Multimedia Suitenstallation
Note

Directed PFS device startup

Y

The PFS driver used by the MME can be started with one program instance per PFS
device, rather than with a single program instance servicing multiple PFS devices. You
have the option of startinigof s- pf s to service multiple PFS devices or to support

one PFS device per instanceiaff s- pf s.

To starti of s- pf s to support one PFS device per instanceé of s- pf s, use the
devi ce option and specify the paths for the bus, device and interface for each. For
example, to handle two PFS devicegYi ce=bus no: device no: interface no):

io-fs-nedia -dpfs, device=1:3:3
io-fs-nedia -dpfs, device=2:4:6

Bus, device and interface numbers are hexadecimal values.

Detecting and synchronizing PFS devices

February 13, 2009

When the MME detects a PFS device, it updatestid ast or es table just as it
does with other types of mediastores, and setstheage typecolumn for the
mediastore t&IME_STORAGETYPE MEDIAFS. To check if the mediastore you are

Chapter 15 o Working with PFS Devices 167

Playing media on PFS devices [] 2009, QNX Software Systems GmbH & Co. KG.

working with is a PFS device, simply check the value of this column for the
mediastore’s entry in theedi ast or es table.

Optimizing PFS device synchronization

PFS playlist album files (with the extensioal b) list album contents and can slow
synchronization of PFS devices. To optimize synchronization of PFS devices, you
should use theSyncFi | eMask>in the MME configuration filemre. conf to instruct
the MME to skip files with the extensioral b:

<Confi gurati on>
<Dat abase>
.<.SS/nchroni zation>
<SyncFi | eMask>\ . al b$</ SyncFi | eMask>
.<.Sg/nchroni zation>

<Dat abase>
<Confi gurati on>

Q The<SyncFi | eMask> element can define multiple character strings identifying files
to be ignored by the MME synchronization. For more information, see “Configurable
file skipping: <SyncFi | eMask>"in the MME Configuration Guide

Playing media on PFS devices

This section describes considerations specific to playing media on PFS devices, and to
getting artwork from these devices. In includes:

e Playing DRM content
e Decryption of DRM content

e Retrieving artwork from Zune devices

Playing DRM content

The MME supports PlaysForSure (PFS) devices that play DRM-protected media. To
play DRM-protected media on PFS devices, you must obtain the required key files
from Microsoft, and use the MME’s PFS moduleof s- pf s).

If you will use DRM-enabled devices on your system, you should start the PFS
module with thedr moption, so that it checks for the required files and exits if it does
not find them. This strategy ensures that the MME does not fail when it attempts to
playback DRM-protected media. For more information about configuring the MME to
support PFS devices playing DRM-protected media, see “Configuring Digital Rights
Management (DRM)” in th&MME Configuration Guide

168 Chapter 15 ¢ Working with PFS Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Playing media on PFS devices

Y

When you have finished playing media from a PFS device, you do not need to
disconnect it from the MME. Just physically remove it from the system.

Decryption of DRM content

DRM content decryption uses an AES block cipher with a 128-bit key. The AES key
is unigue to each playback session; it is different every time a song is played.

When the PFS module registers itself with the PlaysForSure device, it sends a
certificate. This certificate contains the 1024-bit RSA public key that the device will
use to encrypt the seed used to determine the AES key.

When the user selects DRM-protected content:

1 The PFS module requests a license for that content from the PlaysForSure
device.

2 The device returns the license, which includes an encrypted seed.

3 The PFS module uses a private RSA key to decrypt the seed, then uses the
decrypted seed to determine the key for the AES block cipher.

4 The PFS module processes every 128 bits of encrypted content with the 128-bit
AES key to yield the decrypted content for playback.

Retrieving artwork from Zune devices

February 13, 2009

Zune devices are currently the only PFS devices for which the MME supports artwork
retrieval.

To retrieve the artwork from a Zune device, use the MME'’s Load-on-Demand
metadata extraction API as you would to retrieve metadata from any other device.
That is:

1 Callmme mme metadata create session(}o create a metadata session.

2 Get the required artwork information by calling one of the following:

e mme metadatagetinfo_current()
e mme metadata getinfo file()
e mme metadatagetinfo_library()

3 Call mme metadataimage load() to load the artwork.

For more information about metadata sessions for the Load-on-Demand metadata
extraction API, see “Getting artwork” in the chapter Metadata and Artwork.

Chapter 15 o Working with PFS Devices 169

Devices that don't support Get Parti al Cbj ect 0 2009, QNX Software Systems GmbH & Co. KG.

Devices that don’t support Get Par ti al Cbj ect

The default configuration fdro- f s- nedi a is to support only PFS devices that
implement theGet Par t i al Obj ect MTP command, as specified by the PFS 2.01
specification. Unlesso- f s- medi a is configured to support PFS devices that don't
support theGet Par t i al Chj ect MTP command, attempting to access such a devices
produces amnf o. xni file with the following:

<Not Support ed>101k</ Not Support ed>.

If your environment requires that you use devices that don’t support the

Get Parti al Obj ect MTP command, you must specify thhet si ze option and the
buffer size when you staito- f s- medi a. For example, to specify a 3 megabyte
buffer:

io-fs-nedia -dpfs, getsize=3M

Devices that support only th@et Cbj ect MTP command require that the MME have
enough memory allocated by thget si ze option for it to read in the entire file. If the

file exceeds the memory allocated, the read fails. Note, however, that you can have the
MME allocate memory dynamically by settingt si ze to O (get si ze=0). This
configuration allows the MME to use as much memory as is available to read a file,
allowing it to read in bigger files — with the danger that all available dynamic memory
may be allocated for a file read, leaving no dynamic memory available for other uses.

For more information about how to configure- f s- medi a to work with legacy
devices that don't fully support the PFS 2.01 specification; eé&- pf s. so.

170 Chapter 15 ¢ Working with PFS Devices February 13, 2009

Chapter 16

February 13, 2009

Working with Bluetooth Devices

In this chapter...

Integrating Bluetooth audio devices into the MME173

Creating a Bluetooth device representation to the MediaFS specification
Thei o- f s- nedi a module example 174

Modifying thei o- f s- medi a module example 177

Using thei o- f s- medi a module 178

Messages for controlling Bluetooth devicesl79

Using Bluetooth devices with the MME 180

Chapter 16 o Working with Bluetooth Devices 171

[2009, QNX Software Systems GmbH & Co. KG. Integrating Bluetooth audio devices into the MME

Y

The MME Bluetooth devices. This section describes how to integrate Bluetooth
devices into the MME, and provides some basic information about accessing
Bluetooth device functionality through the MME:

e Integrating Bluetooth audio devices into the MME

e Creating a Bluetooth device representation to MediaFS specification
e Thei o-fs- medi a module example

e Modifying thei o- f s- nedi a module example

e Using thei o- f s- medi a module example

e Messages for controlling Bluetooth devices

e Using Bluetooth devices with the MME

For information about how to get configuration values from a Bluetooth device, see
“Getting and setting external device options” in the chapter External Devices, CD
Changers and Streamed Media.

Integrating Bluetooth audio devices into the MME

February 13, 2009

The MME uses thé o- f s- medi a interface to control playback on remote devices.
This interface permits device agnostic playback control and metadata extraction, and
lets the MME control playback without detailed knowledge of the underlying device.

To control Bluetooth audio devices, the MME uses the MediaFS interface provided by
i o-fs-nmedia.

Bluetooth stack,

MME <> io-fs-media <> Resource manager,
or

Controller

The MME uses the i 0- f s interface to control a Bluetooth audio device.

See also o- f s- nedi a in the MME Utilities Reference

To use Bluetooth devices with the MME you must integrate them into the MME. This
integration requires three tasks:

1 Create a Bluetooth device representation to MediaFS specification.
2 Configure the MME for Bluetooth support.

3 Control the Bluetooth device through the MME and play media.

Chapter 16 o Working with Bluetooth Devices 173

Creating a Bluetooth device representation to the MediaFS specification o 2009, QNX Software Systems GmbH &
Co. KG.

Q You should be familiar with the QNXlediaFS (Media File System) Specification
before starting work on integrating Bluetooth devices into the MME. If you do not
have the latest MediaFS specification, contact your QNX representative.

Creating a Bluetooth device representation to the
MediaFS specification

The Aviage Bluetooth Integration Kit provides the resource manager framework
required for representing Bluetooth devicesivia f s- nedi a. This resource
manager provides the ability to load user-created modules that uses the MediaFS
specification to describe devices.

Access to a control device is specific to that device and depends on how the device is
represented by the system. The access interface can be via any of:

e a Bluetooth stack
e aresource manager

e amemory mapped controller

You can also create your own resource manager to represent Bluetooth devices,
following the MediaFS specification.

The i o- f s- medi a module example

To facilitate development of neino- f s- nedi a AVRCP modules describing
Bluetooth devices, the Aviage Bluetooth Integration Kit includes af s- nedi a
module example that implements the Bluetooth AVRCP (Audio/Video Remote
Control Profile).

This example contains the complete framework required éoif s- medi a modules
that describe devices. You only need to modify device-specific sections to change the
module so that it can access your required underlying control devices.

What the i o- f s- nedi a module example does

Thei o- f s- medi a AVRCP module is a plugin to thieo- f s- nedi a resource
manager. Wheno- f s- nedi a with an AVRCP module is started, it:

e calls the code entry poirgvrcp_mount()
e starts atimer
e waits to be informed that a remote device is present

When it learns of a remote device, the- f s- nedi a resource manager registers a
path, called thenountpoint to the location of MediaFS filesystem. The default

174 Chapter 16 « Working with Bluetooth Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. The i o- f s- medi a module example

avrcp_devctl()

avrcp_mount()

February 13, 2009

mountpoint used by the module provided with the Aviage Bluetooth Intergration Kit is
/ f s/ avr cp0. When you have configured the MCD, it will monitor the system for this
path. See “Modifying the MCD configuration file for Bluetooth” below.

[

/fs/avrcp0

.FS_INFO.

info.xml

The i o- f s- medi a MediaFS module hierarchy

Since thd o- f s- nedi a AVRCP module implements only a subset of the MediaFS
filesystem hierarchy, the only item at this path is tl&S_i nf o. directory.

The. FS_i nf o. directory contains MediaFS entries used for playback control and
device information extraction. The directory for the- f s- nedi a AVRCP module
contains only thé nf o. xni file. The first request to read thef o. xm file causes
avrcp_getinfo() function to populate the file’s contents.

All playback and metadata extraction messages are issued through an open file
descriptor to thé nf 0. xni file. These are handled by the functiamrcp_devctl()
This function and other major functions @vr cpexanpl e. ¢ are described below.
For more detailed information about these and other functioasiipexanpl e. c,
see the source file.

Theavrcp_devctl()function is the workhorse for all device control messages. It
translates MediaFS playback and metadata extraction commands, then transmits them
to the remote device. All commands handled bydkecp devctl()function require
the addition of device-specific control code to the f s- medi a module example.

See “Configuring the MME for Bluetooth support” for more information about
available commands.

Theavrcp_mount()function is the entrance point for the- f s- medi a module. It
allocates memory associated to the driver. After allocating memory and registering

Chapter 16 o Working with Bluetooth Devices 175

The i o- f s- medi a module example [0 2009, QNX Software Systems GmbH & Co. KG.

internal functionsavrcp_mount()enables a timer that handles polling for remote
device insertions and removals.

You can modify the structuravr cp_devi ce defined in theavr cpexanpl e. h
header file to store user data that persists for a mount period.
avrcp_options()

Theavrcp_options()function passes arguments to the driver atitbef s- nedi a
interface. The o- f s- nedi a module example includes the following set of options:

e devi ce — the control device to which commands are issued
e nount — specify the mountpoint

e verbose — avalue to enable logging at verbosity levels; the functog() can
use the verbosity level to filter logging.
avrcp_timer()

The functionavrcp_timer() is used to detect the presence of a remote device to mount
and register its path. To use this function you must add device-specific code to the

i o-fs- nedi a module that will communicate the presence of a remote device so that
it can be mounted.

Because the mountpoint for the- f s- nedi a module can be registered and
unregistered, if a remote device is present and available toglagp timer()
registers its mount path. If the remote device is removed from the system,
avrcp_timer() unregisters the mount path.

The mount process

The mount process has two stages:
1 Establish a valid connection to the resource manager or AVRCP controller.
2 Confirm that the remote device is connected.

If the resource manager or the AVRCP controller is unavailablej éhé s- nedi a
module uses thavrcp _timer() function’s “poll” until it detects that the required
resource is available for mounting.

The poll rate is set by the user in the configuration options. See above.

The avr cpexanpl e. h header file

Theavr cpexanpl e. h defines the structurevr cp_devi ce and several constants
used by the o- f s- medi a AVRCP module.

#i ncl ude <inttypes. h>
#i ncl ude "nedi a. h"

#defi ne AVRCP_NAME " AVRCP"

176 Chapter 16 » Working with Bluetooth Devices February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Modifying the i 0- f s- medi a module example

#defi ne NAVE_BUF_SI ZE 512
#defi ne AVCP_METADATA_MAX 1024

struct avrcp_device {
struct nedi af sdevice nediafs;

char * devpat h;

i nt fd;

char dname[AVCP_METADATA MAX] ;
char dseri al [AVCP_METADATA MAX] ;
uint16_t ver bose;

b

The structureavr cp_devi ce is the principle AVCP device structure. Itis defined in
theavr cpexanpl e. h header file and carries information about these devices. It can
be extended to hold data about an underlying device. Its standard members include:

Member Type Description

mediafs struct medi af sdevi ce An opaque structure; it must be present and
first.

devpath char The pathname to the AVCP device resource
manager.

fd i nt The file descriptor connection to device
resource manager, or -1 if not connected

dnamgAvCP_METADATA _MAX] char Bluetooth-friendly name

dserial[AvCP_METADATA_MAX] char Bluetooth address (used as device serial
number)

verbose uint16_t The log level verbosity

Modifying the 1 o-f s- nedi a module example

This section describes how to modify and build tlee f s- medi a module example.

Adding device-specific code to the module

February 13, 2009

The Aviage Bluetooth Integration Kit includes a set of files that make up the
i o-fs-medi amodule. These files include:

e avrcpexanpl e. c — the source code for the module
e avrcpexanpl e. h— a header file with thavr cp_devi ce structure

The only file that requires changes for integration isadhiecpexanpl e. c file.
Sections of this file that require the addition of device-specific code are denoted by
comments, as follows:

e // -- START DEVI CECODE— the start of device-specific code section

Chapter 16 o Working with Bluetooth Devices 177

Using the i o- f s- medi a module 0 2009, QNX Software Systems GmbH & Co. KG.

e // -- TASK: — a description of what the device-specific code needs to
accomplish

e // -- PSEUDOCODE— an optional a high-level description of an algorithm or a
routine that must be replace by device-specific code

e // -- EXAMPLECODE.— optional code that can remain and be used in the
device-specific code

e // -- END DEVI CECODE — the end of device-specific code section

Below is an example of a section of ther cpexanpl e. c file that requires
device-specific code:

case DCVD_MEDI A_PREV_TRACK:
/'l -- START DEVI CECODE

[l -- TASK: |ssue conmand to skip to the previous track on

I the renote device.

/1 Device control may be supported. |If not supported,
11 st at us=ENOTSUP.

11 Devi ce control can fail.

/1 -- PSEUDOCODE:
/1 status = DEVI CEFUNC PREV_TRACK();
/1 -- END DEVI CECODE

br eak;

Building the module

After you have added the required device-specific code to dhés- medi a module,
you can build it as follows:

1 Copy the sample modules to your home directory:

cp - R SQNX_TARGET/ exanpl es ~/ exanpl es

2 In your home directory, make and install the module:

cd "/ exanpl es/io-fs/drvr/ nedial avr cpexanpl e
meke install

To build all sample modules, you can make them from™thexanpl es/i o-fs
directory, as follows:

cd “/exanples/io-fs
make install

Using thei o- f s- nedi a module

After you have added all your device-specific code toitbef s- nedi a module, you
can use o- f s- medi a to load it. Starting the module is as simple as running an
instance of o- f s- nedi a with the driver, as follows:

178 Chapter 16 « Working with Bluetooth Devices February 13, 2009

[2009, QNX Software Systems GmbH & Co. KG. Messages for controlling Bluetooth devices

io-fs-nedia -davrcpexanpl e

You can also pass options to the module, as follows:

io0-fs-nedia -davrcpexanpl e, ver bose=10, nount =/ f s/ al t/ nount/ poi nt
Seeavrcp_options()for a list of options.

If the remote device is present, then your application should register a new mount
point. You can use thies commandline instruction to examine the mountpoint:

|s [fs/avrcpO

You can add multiple devices by running separate instances of the module, as follows:

io-fs-nedia -davrcpexanpl e, dev=/ dev/ avr cp0, nount =/ f s/ avr cp0
io-fs-nedi a -davrcpexanpl e, dev=/dev/ avrcpl, nount =/ fs/avrcpl
io-fs-nedi a -davrcpexanpl e, dev=/dev/ avrcp2, nount =/ f s/ avrcp2

Messages for controlling Bluetooth devices

Y

This section lists the messages that you can send to Bluetooth devices to control
playback and to extract metadata.

e Remote devices differ, so device-specific control codes may not support some
commands. If a command is not required and is not supported, it must return an
error witherrno set toENOTSUR

e All state modification control messages musislgachronousA requested action
must either complete or fail before returning. For example, if the state modifier
DCMD_MEDIA_PLAY message is issued, upon return of tlewctl()call, the
underlying device must be in a playing state, or have returned a POSIX error
indicating why the command failed.

e For more information about commands, see the MediaFS specification.

Playback messages

AVRCP 1.0

February 13, 2009

Playback of media tracks on a Bluetooth device occurs on the device. The start and
manage playback theo- f s- medi a module sends control messages to the Bluetooth
device. The table below lists playback commands implemented for AVRCP 1.0 and
1.3 devices. Required commands are marked with an asterisk (*). All others are
optional.

Thei o- f s- nedi a driver implements the following playbadevct | s for
AVRCP 1.0 devices:

e DCMD_MEDIA_PLAY*

Chapter 16 o Working with Bluetooth Devices 179

Using Bluetooth devices with the MME 0 2009, QNX Software Systems GmbH & Co. KG.

AVRCP 1.3

DCMD_MEDIA_PAUSE*
DCMD_MEDIA_RESUME*
DCMD_MEDIA_NEXT_TRACK
DCMD_MEDIA_PREV_TRACK
DCMD_MEDIA_FASTFWD
DCMD_MEDIA_FASTRWD

DCMD_MEDIA_PLAYBACK_INFO*

In addition to the playback commands listed above, the following optional shuffle and
repeat commandsevct | s are implemented for AVRCP 1.3 devices:

DCMD_MEDIA_GET_SHUFFLE
DCMD_MEDIA_SET_SHUFFLE
DCMD_MEDIA_GET_REPEAT

DCMD_MEDIA_SET_REPEAT

Metadata messages

Metadata extraction commands retrieve metadata about the currently playing file. All
strings returned by the metadata extraction commands must be UTF-8 encoded. All
metadata extraction commands are optional.

DCMD_MEDIA_SONG
DCMD_MEDIA_ALBUM
DCMD_MEDIA_ARTIST
DCMD_MEDIA_GENRE
DCMD_MEDIA_DURATION

DCMD_MEDIA_TRACK_NUM

Using Bluetooth devices with the MME

This section describes:

how to configure the MME for Bluetooth support

how to set up an MME track session on manage playback on a Bluetooth device

180 Chapter 16 « Working with Bluetooth Devices February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Using Bluetooth devices with the MME

Configuring the MME for Bluetooth support

After you have modified youro- f s- medi a module and have it running, you must
configure the MME to enable Bluetooth support. You need to:

e modify the MCD configuration file

e add an entry for Bluetooth to the ot s table

Modifying the MCD configuration file for Bluetooth

To enable Bluetooth support, add an entry to the MCD configuration file to instruct the
MCD to monitor the path for Bluetooth devices. For example:

[/fslavrcp*]

Cal | out = PATH_MEDI A_PROCMGR
Ar gunent = / proc/ nmount
Priority = 11,10

Start Rule = | NSERTED

Stop Rule = EJECTED

For more information about the MCD, see tMBIE Utilities Reference

Enabling Bluetooth support in the sl ot s table

Y

The Bluetooth slot type ISIME_SLOTTYPE_MEDIAFS (4), and the storagetype is
MME_STORAGETYPE A2DP (12). To enable Bluetooth support, you need to add an
entry such as the following in the ot s table:

I NSERT | NTO sl ot s(pat h, zonei d, name, slottype)
VALUES(' /fs/avrcpO’', 1, 'Bluetooth’, 4);

Theslottypefor Bluetooth support must be

Playing media on Bluetooth devices

February 13, 2009

If you have configured the MME correctly to support Bluetooth devices, on learning of
the insertion of a Bluetooth device, the MME:

e creates an entry for the device in tiedi ast or es table
e inserts a singl&TYPE_DEVI CEfile ID (fid) into thel i br ary table

You can use this file ID to create a track session with a single track for the device, then
issue commands to start and manage playback. Playback remains on the Bluetooth
device, and the MME does not have access to information about an individual track on
the device unless the track is being played.

Chapter 16 o Working with Bluetooth Devices 181

Using Bluetooth devices with the MME 0 2009, QNX Software Systems GmbH & Co. KG.

MME playback features supported for Bluetooth devices

The MME supports calls to the following playback functions for Bluetooth devices:
e mme stop()

e mme play()

e mme play set speed(0)

e mme play_set spee@1000)

e mme button(MM _BUTTON NEXT)

e mme button(MM _BUTTON PREV)

Below are sample sequences showing how to use the MME commandline utility
(mecl i)to:

e query the MMEnedi ast or es table for a Bluetooth device
e query the MME i br ar y table for the file ID for the Bluetooth device
e create a track session and start playback on the Bluetooth device

Query the nedi ast or es table

qdbc -d nme "select nsid,slotid, storage_type, nountpath \
from nedi ast or es”

Rows: 2 Cols: 4

Nanes: +nsi d+sl oti d+st orage_t ype+nount pat h+

00000: | 1| 1] 2|/ medialdrive|

00001: | 2|9|2|/fs/avrcpO]|

Query the | i brary table

qdbc -d mMme "select fid, nsid, folderid,ftype,filename, title \
fromlibrary where nsid=2"

Rows: 1 Cols: 6

Nanmes: +fi d+nsi d+fol deri d+ftype+fil enane+titl e+

00000: | 2|2|2|5]]|Bluetooth|

Create a track session and start playback on the Bluetooth device
mrecli newtrksession | "Select fid fromlibrary where nsid=2"
(rc=0, errno=0) new trksessioni d=2. Execution Tine=0.010

mrecli settrksession 2
(rc=0, errno=0) Set trksessionid=2. Execution Tine=0.031

mecli play
(rc=0,errno=i0) Playing fromtracksession fid = 2. Execution Ti ne=0.038

182 Chapter 16 « Working with Bluetooth Devices February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Using Bluetooth devices with the MME

Getting metadata

Audio routing

February 13, 2009

The MME has access to metadata for a track on a Bluetooth device only when the
device is playing the track. To obtain this metadata, query the MM&igl ayi ng
table.

The MME does not handle audio routing for the- f s- nedi a module. You must
configure your system to properly route audio from Bluetooth devices to the desired
output location.

Chapter 16 o Working with Bluetooth Devices 183

Chapter 17
MME Sample Applications

February 13, 2009 Chapter 17 ¢« MME Sample Applications 185

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

The standard MME package includes several sample applications, which provide
simple examples of how to perform basic tasks with the MME. These sample
applications are:

e mme-shuf f | e — just play some tracks
e mme- pl ayer - si npl e — simple media player with unlimited SQL requests
e nme- cdri pper — media rip, then play

e player-nultisource— enable selection and playback of media from different
sources, with limited SQL requests

The MME also includes the source code for the command-line utilities:

e mmecli —issue commands corresponding to MME API calls

Chapter 17 ¢« MME Sample Applications 187

me-shuffl e

[J 2009, QNX Software Systems GmbH & Co. KG.

MME sample application: play tracks

Syntax:

Runs on:

Options:

Description:

Examples:

See also:

mre- shuffle [-d mmedevicg [-r]

Any platform that supports Photon and the MME.

- d mme device Use themme deviceto connect to the MME. By default,
mre- shuf f | e uses/ dev/ nme/ def aul t

-r Set the playback mode to random playback. The default mode is
sequential mode.

The sample applicationme- shuf f | e demonstrates how to use the MME in a simple
way. It performs all required operations to connect to the MME, create a new track
session, implementing play, stop, pause, continue, next and previous operations.

See the application source code.

mre- pl ayer - si npl e, nre- cdri pper,me- pl ayer-mul ti source

188 Chapter 17 ¢ MME Sample Applications February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. ITTTE = pl a.y er = S | erI e
MME sample application: media player with unlimited SQL requests

Syntax:
mre- pl ayer-si npl e [options]
Runs on:
Any platform that supports Photon and the MME.
Options:
- s server The path to the Photon server. Default #ev/ phot on or the
$PHOTONenvironment variable.
-x X[AQ[r] The initial x position in pixels, or as a percentage of screen width if
% is specified. It is specified, the coordinate is relative to the
current console.
-y y[9A[r] The initial y position in pixels, or as a percentage of screen height if
% is specified. It is specified, the coordinate is relative to the
current console.
-hh[4 The initial height dimension in pixels, or as a percentage of the
screen width if % is specified.
-ww 9 The initial width dimension in pixels, or as a percentage of the screen
height if % is specified.
-Si|nn The initial state of the main window:(iconified, m: maximized n:
normal).
- mdevice The device to use to connect to the MME.
- d device The device to use to connect to the QDB.
Description:

The sample applicatiomme- pl ayer - si npl e shows how to:

e create an HMI application that supports unlimited SQL queries to create track
sessions

e play media from these track sessions

At startup, you can specify the location of the MME and the QDB, and numerous
display options. For example:

e Use thé dev/ gdb/ gui device to connect to the QDB:
me- si npl e- pl ayer -d /dev/qdb/ gui

February 13, 2009 Chapter 17 ¢« MME Sample Applications 189

nme- pl ayer-si npl e 1) 2009, QNX Software Systems GmbH & Co. KG.

e Run at initial position 10,10 with initial dimension of 200x300:
mme- si npl e- pl ayer -x10 -y10 -h200 -w300

Examples:

See the application source code.

See also:

nme- shuf f | e, me- cdri pper,nme- pl ayer-nmnul ti source

190 Chapter 17 ¢ MME Sample Applications February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. ITTTE = C d r I p per
MME sample application: rip and play media tracks

Syntax:
nme- cdri pper [options]
Runs on:
Any platform that supports Photon and the MME.
Options:
- s server The path to the Photon server. Default gev/ phot on or the
$PHOTONenvironment variable.
-x X[AQ[r] The initial x position in pixels, or as a percentage of screen width if
% is specified. It is specified, the coordinate is relative to the
current console.
-y y[4A[r] The initial y position in pixels, or as a percentage of screen height if
% is specified. It is specified, the coordinate is relative to the
current console.
-hh[4 The initial height dimension in pixels, or as a percentage of the
screen width if % is specified.
-ww % The initial width dimension in pixels, or as a percentage of the screen
height if % is specified.
-Si|nn The initial state of the main window:(iconified, m: maximized n:
normal).
- mdevice The device to use to connect to the MME.
- d device The device to use to connect to the QDB.
Description:

The sample applicatiomme- cdr i pper shows how to create an HMI application that

rips media tracks, then plays the ripped tracks. It shows how to use priority
background ripping to rip and play tracks concurrently. It displays metadata from the
source track (on a CD, for example) and plays from the ripped destination track (on an
HDD, for example).

At startup you can specify the location of the MME and the QDB, and numerous
display options. For example:

e Run using Photon server érlev/ phot on_s:

mme-cdri pper -s photon_s

e Run using Photon server émet / magent a:

February 13, 2009 Chapter 17 ¢« MME Sample Applications 191

mm - C d r I p p e r 2009, QNX Software Systems GmbH & Co. KG.

mme- cdri pper /net/nmagental/ dev/ photon

e Run at initial position 10,10 with initial dimension of 200x300:
mme-cdri pper -x10 -y10 -h200 -w300

Examples:

See the application source code.

See also:

nme- shuf f | e, me- pl ayer - si npl e, me- pl ayer - nul ti source

192 Chapter 17 ¢ MME Sample Applications February 13, 2009

112009, QNX Software Systems GmbH & Co. KG. nme- pl ayer-nul ti source
MME sample application: play media from different sources, with limited SQL requests

Syntax:
mre- pl ayer-nul ti source [opti ons]
Runs on:
Any platform that supports Photon and the MME.
Options:
- s server The path to the Photon server. Default #ev/ phot on or the
$PHOTONenvironment variable.
-x X[A4[r] The initial x position in pixels, or as a percentage of screen width if
% is specified. It is specified, the coordinate is relative to the
current console.
-y y[9A[r] The initial y position in pixels, or as a percentage of screen height if
% is specified. It is specified, the coordinate is relative to the
current console.
-hh[%4 The initial height dimension in pixels, or as a percentage of the
screen width if % is specified.
-ww [% The initial width dimension in pixels, or as a percentage of the screen
height if % is specified.
-Si|mn The initial state of the main window:(iconified, m: maximized,n:
normal).
- mdevice The device to use to connect to the MME.
- d device The device to use to connect to the QDB.
-V Verbose: print SQL and results o dout .
Description:

The sample applicatiomme- pl ayer - mul ti sour ce shows how to create an HMI
application that creates track sessions and plays media from different mediastores. Itis
designed to work with large numbers of tracks, and includes:

e use of directed synchronization with iPod devices

e creation of unions of multiple mediastores of the same type (multiple USB sticks,
for example)

At startup you can specify the location of the MME and the QDB. For example:

e Use thé dev/ gdb/ gui device to connect to the QDB:

nmme- pl ayer-nul ti source -d /dev/qdb/ gui

February 13, 2009 Chapter 17 ¢« MME Sample Applications 193

mme- pl ayer-nul ti source 11 2009, QNX Software Systems GmbH & Co. KG,

Examples:

See the application source code.

See also:

nme- shuf f | e, me- pl ayer - si npl e, me- cdri pper

194 Chapter 17 ¢ MME Sample Applications February 13, 2009

Glossary

February 13, 2009 Glossary 195

[J 2009, QNX Software Systems GmbH & Co. KG.

Checkpoint
A snapshot of a database, usually RAM-based, that is copied to persistent storage,
such as a hard drive or flash. The checkpoint can be used to restore the database after a
power cycle or if the database becomes corrupt.

CBR

Constant bitrate.

Control context

A multimedia output point, or location where media files can be played. A control
context represents an audio output device, can hold a single track session, and can play
a single track at a time. By default, the MME has one control context, but you can add
more to the MME database, then connect to them. An MME client receives

notifications from an attached control context.

CPPM key
Content Protection for Pre-recorded Media — a key used for DRM.
Codec
Coder-Decoder — an program that encodes and/or decodes a digital data stream or
signal.
DSP
Digital Signal Processor — a microprocessor that processes digital signals is real-time.
DTS
Digital Theater Systa — a multi-channel digital sound format.
DRM
Digital Rights Management — a generic term for technologies used to control access
to and usage of copyrighted works. The MME supports files protected with Microsoft
Windows Media DRM, via thé of s- pf s. so PFS module td o- f s.
FID or fid
File ID — in the MME, a unique identifier for media files and tracks
File

In the context of the MME, “file” refers to all non-media files (the MME configuration
file, for instance) and to media files that are being read or otherwise manipulated for a
purpose other than playing them. See also “track” below.

February 13, 2009 Glossary 197

[J 2009, QNX Software Systems GmbH & Co. KG.

Locale code

Media

Mediastore

Metadata

MME

MTP

Playback

Playlist

PlaysForSure (PFS)

Prune management

Ripping

198 Glossary

The locale code is a string containing a 5-character language and region code. This
code consists of a 2-character ISO639-1 language code, followed byldracter,
followed by a 2-character ISO3166-1 alpha-2 region code. See

http://ww. | oc. gov/ st andar ds/i so639- 2/ php/ code_Ii st. php

Any music, pictures, or video, in block or stream format.

Any source for multimedia data; examples include hard drives, DVDs, CDs, and
media devices such as an iPod or MP3 player.

Data describing a media track. Metadata includes but is not limited to track name,
artist(s), release date, genre and so on.

Multimedia Engine — the Aviage Multimedia Suite’s multimedia engine.

Media Transport Protocol — a protocol developed by Microsoft for synchronizing
both protected and unprotected media content on portable media devices such as MP3
players.

The act of playing of a media track.

A list of media files (identified by FIDs). Your application can play a playlist by
creating a track session from it.

A certification given by Microsoft to media devices that use the MTP protocol.

A technique of ensuring that a database doesn't grow too large or exceed a specified
size by “pruning” (deleting) unused data.

Ripping is the process of reading files from a mediastore, changing the format of these
files into another format if required, then writing the files in their new format to a
mediastore or other storage device. Copying media is simply ripping media and
writing the destination file in the same format as the source file.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Synchronization

Track

Track session

UOoP

VBR

Zone

February 13, 2009

The process by which the MME examines mediastores and updates its database with
information about the media tracks on the stores and with the metadata for these
media. Information and metadata includes but is not limited to media type and format
(audio, video, etc.), track name and language, genre and cover art.

In the context of the MME, “track” refers to media files that are being played or read
and otherwise accessed or manipulated for playing. For example, the MME
synchronizes folders and tffilesinside them, but it reads theacksfrom a playlist

and places them in a track session. See also “file” above.

A list of media tracks (identified by FIDs) that can be played by the MME on a
specific control context.

User Operation Prohibitions — prohibitions placed on what users can do when
manipulating a video.

Variable bitrate.

In the MME, an area to which output devices are attached, and to which the output
from media playback is sent.

Glossary 199

Index

! sample for playing media 193
sample for playing tracks 188

.alb sample for ripping media 191
skipping on PFS devices 168 artwork

$NO PRESERVEPATH 122 iPod

$PRESERVEPATH 122 retrieving from 157

$PRESERVEPATH_AFTER 122 PES device

_SLOGC MME 21 retrieving from 169

_SLOGC QDB 21 retrieving from iPod 157

<interface> 130 retrieving from PFS device 169
devices accessed through a device driver retrieving from Zune device 169

130 _ Zune device

USB devices 130 retrieving from 169

1-wire Seeone-wire audio

2-wire Seetwo-wire driver for iPods 140

routing for Bluetooth devices 183
Audio/Video Remote Control Profile See

A AVRCP
authentication
aborting |Pod_ 140
blocking reads 76 chip from Apple 140
ACP cross transport 141
building the module 162 module for Apple devices 159
custom module 159 Authentication coprocessSeeACP
AVRCP
acpl ock 161
album files Bluetooth 174
on PFS devices 168 plugin module example 174
appending avrcp_devctl() 175

avrcp_device 176
avrcp_mount() 175
avrcp_options() 176

streams to a track session 133
Apple authentication chip

appﬂzgggrl]e 199 avrcp _timer() 176
sample for playing tracks 189 avrcpexanple. h 176
applications
sample 187

February 13, 2009 Index 201

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

B

background

media copying and ripping 120

Bluetooth

AVRCP 174

avrcp_devctl() 175

avrcp_device 176

avrcp_mount() 175

avrcp_options() 176

avrcp timer() 176

building the plugin module 178

configuring the MCD to support 181

configuring the MME to support 181

creating a MediaFS device representation
174

getting metadata 183

implementing in the MME 179

integrating into the MME 173

metadata extraction 180

modifying the module example 177

playback 181

playback controls 179

plugin module example 174

routing audio 183

support 173

using MME track sessions 181

using thei o- f s- nedi amodule 178

Bluetooth device

configuration 131

BMP

encoding 100
pre-processing 100

bookmarks 76

browsing
media 90
buffer
levels 76
buffering

playback 111

C
camera

IP 133
202 Index

capabilities
device 37
mediastore 37
track session 37
case-sensitivity
playlists 82
CD
detection with MCD 34
drive timeout 111
mixed-mode 34
removal with MCD 39
CD changers 133
CD-Text 43
CDText 96
changing
metadata 126
chapter
iPod
getting information 156
seekingto 156
playing ona DVD 107
cleaning up
after deleting files 54
during synchronization 47
invalidcopied id fields 54
clearing
track sessions 66
client application
connecting to the MME 15
codec
H.264 105
comparing time values
in the MME database 25
configuration
Bluetooth device 131
determining for iPod 132
exteranl device 129
iPod 130, 132
video 8
22277727277
deviceinterface 130
configuring
mf _trackpl ayer 112
skip forward 112
connecting 15
iPods 141

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

to a control context 3

tothe MME 3
connection

mre_hdl _t 16

safety 16
connections

optimal for iPod 148
control context
connectingto 3
control contexts 3
defining multiple 3
examples 6
maximum 5
conventions
typographical xiv
copied fid 54
copied id
cleaning up invalid 54
copy queue 119
building 123
clearing 119, 125
managing 125
removing files from 125
copying

synchronizing files before 124
copying media Seemedia copying

correcting
metadata 126
corrupt
database 26
creating
track sessions 61
zones 10
Cross

transport authentication 141

Cross Transport Authentication
iPod 141
cta

iPod Cross Transport Authentication 141
CTA SeeCross Transport Authentication

D

damaged
media 114

February 13, 2009

damaged media 111
danpi ng_audi o_writer filter 154
database

corrupt 26
repair 54
time values 25

DCMD_MEDIA_* 179
decryption

of DRM content 169

delay

completing synchronization 47

deleting

cleaning up files after 54
playlists 83
track sessions 66

detecting

iPods 148
mediastores 31, 39
PFS devices 167

deva-ctrl-ipod.so 140
device

attaching output to zone 10
capabilities 37
external options 129

mapping physical location to mediastore

filesystem path 37
path for Qnet 38
specifying output over Qnet 8

devices

output 6

digital audio
Apple devices that support 142
disconnecting

from the MME 17

disk changers

external 38

display

parsing for iPod 156

drivers

starting iPod 145

DRM

decryption of content 169

duplicate

fids in a track session 62

DVvD

managing access to video 108

Index

203

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

managing attributes 105

navigation 106

playing a specific chapter 107

playing a specific title 107

synchronization 106
DVD-video

region codes 108

E

EBADF 26
environment
configuring for end user 111
error
read 113
read recovery 112
events
classes 20
copying 120
delivery during copying and ripping
getting 21
registering for 18
ripping 120
stopping 21
unregistering for 21
explored files
filtering 89
explorer APl 87
resuming playback 73
exploring
media 87
mediastore 87
external
disk changers 38
external device
configuration 129
extract
metadata 97

F

fast forward
speed on iPods 154

204 Index

120

fast-backward
speed 74
fast-forward
speed 74
fid

duplicate in file-based track sessions 62

excluding from track session 63

file ID See fid

file-based
track sessions 61

files
displaying names 89
gettingfid from iPod 153
getting name from iPod 153
reading and displaying names 89
skipping unplayable 114
synchronization 50
unplayable 113

filtering
explored files 89

flags
synchronization 45

folders

missing during directed synchronization

50
fullplay_count
library 75

G

gapless
playback 75
Get Parti al Obj ect
not supported 170
GIF
pre-processing 100
Gracenote 96
metadata 55
graphics
pre-processing 100

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

H

H.264

playing 105
handle

MME connection 16
HD radio tagging Seeradio tagging
HTTP

stream

appending to a track session 133

ID3
metadata tags 93
image
pre-processing 100
processing module 100
processing through metadata APl 101
images
retrieving from iPod 157
retrieving from PFS device 169
installing
MME components for external media
players 139, 167
interface
configuration
devices accessed through a device driver
130
USB devices 130
supported
devices 130
internationalization SeeConfiguring
Internationalization in th&AME
Configuration Guide
internet
streamed media 133
i 0-audi o
starting for iPods 146
io-fs-nmedia
creating a Bluetooth device representation
174
i 0o-medi a
configuring mmf trackplayer 112
playback buffering 111

February 13, 2009

i ofs-pfs.so 170
IP
camera 133
iPhone
problems with repeat mode 156
iPod 139
ACP module 159
artwork
retrieving 157
audio driver 140
authentication 140
chip from Apple 140
cross transport 141
building the ACP module 162
changing tracks 150
chapter
getting information 156
seekingto 156
configuration 130, 132
determining 132
connection support 141
detecting 148
drivers 145
fast forward 154
getting time position 153
getting track information 153
HD radio tagging 158
i o-audio 146
link kit 159
metadata 95
MME_MSCAP_AUDIO_NONOPTIMAL
148
MME_MSCAP_CONNECTION NONOPTIMAL
148
MME_MSCAP_DEVICE_TRACKSESSIONS
148
parsing display 156
playback through USB transport 146
playing media 150
presented as a USB storage device 142
random mode 155
removing 148
repeat mode 155
resuming playback 154
retrieving artwork 157
reverse 154

Index 205

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

rules for playing media 150
screen zoom 132

serial connection 143
Shuffle 142

splash screen 158
starting playback 150

subtitle
get information 156
setting 156

synchronizing 149

track sessions 150

two-wire connection 143

USB

connection 144

using the ACP module 162

with no digital audio 142
ipod _i2c_addinfo() 160
ipod_i2c_cpready() 160
ipod _i2c init() 161
ipod_i2c_lock() 161
ipod i2c read() 162
ipod_i2c_write() 162
iPod touch

problems with repeat mode 156

J

jitter

in playback position reporting 67
JPEG

endocing 100

pre-processing 100

L

language
preferred playback 107
languages SeeConfiguring Internationalization
in the MME Configuration Guide
last_sync
field in nedi ast or es table 52
lastseen
field in nedi ast or es table 52

206 Index

l'ibrary
fullplay_count 75
l'i brary table
“manually” updates 39
library-based
track sessions 60
i bxm 2.s0 98
Load on Demand
metadata 97
localization 107 SeeConfiguring
Internationalization in thtAME
Configuration Guide
logo
custom on iPod 158
displaying on iPod 158

M

ncd
CD detection 34
CDremoval 39
enabling Bluetooth support 181
MCD Seencd
rule for streamed media 133
media
browsing 90
copying 119
damaged 111, 114
exploring 87
handling problems with 111
metadata for unsynchronized 94
playing 59
ripping 119
media copying
background and priority background 120
behavior when a mediastore is
removed 125
behavior when an error is encountered 125
folder paths 121
mode 120
modifying metadata 126
overriding the global preserve path
configuration 122
templates 121
media players

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

installing MME components for 139, 167
media streams Seestreamed media
MediaFS 173
mediastore

capabilities 37

exploring 87

unsynchronized 87
mediastores

detecting 31, 32, 39

excludingfid 63

managing track sessions across multiple

76
mapping filesystem path to physical device
location 37

states 31, 32

synchronization 43
medi ast or es table

device capabilities 37

mediastore capabilities 37
metadata

“Load on Demand” 97

APl 94

changing 126

completing during ripping 123

correcting 126

custom 51

extracting on Bluetooth devices 180

extraction APl 97

for Gracenote classical music 55

getting 93

getting for currently playing track 95

getting for synchronized media 93

getting for track or file 93

getting for unsynchronized media 94

getting from an iPod 153

getting from Bluetooth devices 183

getting fromnowpl ayi ng table 95

ID3tags 93

in library-based track session 93

iPod 95

managing the handle 95

ratings 96

remote source 96

updating before copy orrip 124
MM_BUTTON_NEXT

using with iPods 154

February 13, 2009

MM_BUTTON_PREV

using with iPods 154
nmm nedi a_status_event _t 129
mm nedi a_status_reason_t 129
mm nedi a_status_t 129
MM_WARNING_READ ERROR 114
MM_WARNING_READ _TIMEOUT 114
mm warnings_t 114
MME

disconnecting from 17

slog code 21
mme bookmark create() 76
mme bookmark delete() 76
mme button() 107
me_dat a. sql

specifying output device pathin 8
mme device get config() 129, 132
mme device set config() 129, 132
mme disconnect() 17
MME_EVENT_CLASS * 20
mme_event _classes t 20
MME_EVENT_FINISHED 68, 107, 114
MME_EVENT_FINISHED WITH_ERROR 68
MME_EVENT _MEDIA_STATUS 129, 156
MME_EVENT_MEDIACOPIER * 120
MME_EVENT_MS *PASSCOMPLETE 44, 47
MME_EVENT_MS_STATECHANGE 76
MME_EVENT_MS_SYNC FOLDER * 48
MME_EVENT_MS_SYNCCOMPLETE 47
MME_EVENT_PLAY_ERROR 114
MME_EVENT_PLAY_WARNING 114
MME_EVENT_SHUTDOWN 17
MME_EVENT_SHUTDOWN COMPLETED 17
MME_EVENT_SYNC SKIPPED 52
MME_EVENT_TIME

setting delivery interval 67
MME_EVENT_TRACKCHANGE 114
MME_EVENT _TRKSESSIONVIEW * 64
MME_EXPLORE * 87
mme explore end() 87
me_explore_hdl _t 87
mme explore info_get() 87
me_explore_info t 87

copying 95
mme _explore position set() 87

filtering files 89

Index 207

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

mme explore size get() 87
mme explore start() 87
mre_fol der_sync_data t 48
mme get output attr() 11
mme get title_chapter() 107, 156
mme getrandom() 68
mme getrepeat() 68
mme getscanmode() 75
mre_hdl _t 16
mme lib_column set() 39
mme media get def lang() 107
mme media set def lang() 107
mme mediacopier add with_metadata() 120,
123
mme mediacopieradd() 120, 123
mme mediacopier clear() 119, 123, 125
mme mediacopierdisable() 125
MME_MEDIACOPIER DISABLED 120
mme mediacopier enable() 120, 125
mme mediacopier get mode() 120
mme mediacopier remove() 125
mme mediacopier set mode() 120
mme mediacopier set name template() 120
mme metadata alloc()
using 95
mre_net adat a_hdl _t
copying 95
mme metadataimage load() 101
mme metadataset() 126
MME_MSCAP * 37
MME_MSCAP_AUDIO_NONOPTIMAL
iPod 148
MME_MSCAP_CONNECTION NONOPTIMAL
iPod 148
MME_MSCAP_DEVICE_TRACKSESSIONS
iPod 148
mme newtrksession() 61
mme output set permanent() 10
mme play_bookmark() 76
MME_PLAY_ERROR READ 113
mme play_get speed() 74
mme play_get status() 68, 74, 75
mme play_resume msid() 150
using with iPod 154
mme play_set speed() 70, 74
mme play_set zone() 10

208 Index

mme play() 69

using with iPod 150
mme playlist _close() 82
mme playlist create() 83
mme playlist_delete() 83
mme playlist generate similar() 83
mre_playlist _hdl t 82
mme playlist item get() 82
mme playlist_items count get() 82
mme playlist open() 82
mme playlist_position set() 82
mme playlist_set statement() 83
mme playlist_sync() 49
MME_PLAYMODE_FILE 63
MME_PLAYMODE_LIBRARY 60, 62
mme resync mediastore() 51, 54
mme seek title_chapter() 107, 156
mme seektotime() 75
mme set notification interval() 67
mme set output attr() 11
mme setpriorityfolder() 52
mme setrandom() 68
mme setrepeat() 68
mme setscanmode() 75
mme settrksession() 62
mme shutdown() 17
mme stop() 70
MME_STORAGETYPEDEVB 63
mme sync cancel() 51
mme sync db_check() 54
mme sync directed() 50, 54
mme sync file() 50
mme sync get msid status() 51
mme sync get status() 51
MME_SYNC_OPTION CLR_INV_COPIED 54
mme trksessionresume state() 70
mme trksessionsave state() 70
mme video get angle info() 105
mme video get audio info() 105
mme video get info() 106
mme video get status() 105
mme video _get subtitle info() 105, 156
mme video set angle() 105
mme video set audio() 105
mme video set properties() 106
mme video set subtitle() 156

February 13, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. Index

mme zone create() 10 iPod
me- cdri pper 191 connection 144
me- pl ayer - nul ti source 193 options
nmme- pl ayer-sinple 189 getting and setting for device 129
mre-shuffle 188 output
mrecli 187 attributes 11
mf _trackpl ayer devices 6

configuring 112 zones 5

handling read errors 112 output device
most popular remote 8

tracks 75 specifying over Qnet 8
MP3 specifying path imme_dat a. sql 8

metadata 93 output devices

streamed 133 attaching to zone 10
MPEG4 controlling 10

playing 105 examples 6
multi-node support 7 making permanent 10
multi-zone output zones

configuring the MME for 6 controlling 10
MusicBrainz 96 out put devi ces

table 8

N
navigation

DvD 106 pathname delimiter in QNX documentation xv
network PCX

MME support for 3 pre-processing 100
next pending

track in track session 75 synchronizations 46
nodes 3 permanent

getting media from remote 7 output devices 10

MME support for 3 PFS

outputting to remote 7 detecting 167
notifications not supported 170

setting interval 67 playback on 168
nowpl ayi ng table PFS device

getting metadata from 95 artwork

retrieving 169
retrieving artwork 169
PFS devices 167

@) playable
_ fieldinlibrary 113
one-wire playback
co'nnectlon buffering 111
iPod 144

changing track sessions 77

February 13, 2009 Index 209

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

controlling on Bluetooth devices 179
DVD title and chapter 107
for Bluetooth devices 181
from copied or ripped files 119
gapless 75
jitter in position reporting 67
managing track sessions 76
pausing 70
pausing in a file-based track session 73
PFS devices 168
preferred language 107
resuming 70,71
resuming in a file-based track session 73
resuming on iPod 154
setting random mode 68
setting repeat mode 68
special features 74
starting from a specific track 69
stopping 70,71
stopping due to read errors 113
streamed media 134
time elapsed 68
total play time 68
playing
H.264 video 105
media 59
MPEGA4 files 105
video 105, 106
pl ayl i st dat atable 49
playlists 61, 81
case-sensitivity 82
create track session from 81
deleting 83
handling missing files 81
synchronizing 49
specific 49
PlaysForSure SeePFS
pre-processing
graphics 100
previous
track in track session 75
priority

background media copying and ripping 120

folder synchronization 52
pruning
track sessions 66

210 Index

Q

QDB
slog code 21
qdb_statement() 26
qdb vacuum() 26
Qnet
device path 38
specifying output device 8
queries
track session 63

query
for track sessions 62

R

radio tagging
iPods that support 159
with iPods 158
random
mode for playback 68
using mode with iPods 155
ratings
metadata 96
read
aborting blocking 76
configuring error recovery 112
configuring skip forward 112
error recovery 112
errors 113
recovering from errors 111
retries 112
Real-time Transport ProtocolSeeRTP
region codes
DVD-video 108
registering
forevents 18
remote
metadata source 96
output device 8
removing
iPods 148
repair
database 54
repeat

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

mode for playback 68

using mode with iPods 155
resuming

playback 71

playback on iPod 154
resynchronization

determining if required 52
retries

configuring forread 112
reverse

oniPods 154
ripping 119

about 119

background and priority background 120

behavior when a mediastore is
removed 125

behavior when an error is encountered 125

mode 120
modifying metadata 126
monitoring progress 119
queue 119
synchronizing files before 124
templates 121
RTP
stream
appending to a track session 133

S

sample applications 187
for playing media 193
for playing tracks 188, 189
for ripping media 191

scratch recovery 111

seamless
track session change 77

seeking
totimeintrack 75
serial connection
iPod 143

setting
track session 64

SGI
pre-processing 100

shutting down

February 13, 2009

the MME 17
slog codes 21
slots
default settings 38
speed
fast-backward 74
fast-forward 74
splash screen
iPod 158
SQL
for track sessions 62
optimizing commands 27
SQLite 27
startup 15
statistics
track played 75
stopping
playback 71
stream
appending to a track session 133
streamed media 133
configuring the MME 133

playing 134
streams Seestreamed media
structures
nre_hdl _t 16
subtitle
iPod
getting information 156
setting 156

synchronization
about mediastore 43
and track sessions 64
cleanup 54
cleanup 47
database
repairing 54
delay due to database cleanup 47
directed 50
missing folders 50
DVD 106
file 50
flags 45
iPods 50, 149
passes 44
pending 46

Index

211

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

PFS devices 168
playlists 49

pre-copy 124

priority folder 52

repair

database 54
synchronizer selecting 43
using to browse 87

T
TGA
pre-processing 100
time
comparing values in the MME database 25
getting position on iPod 153
seeking to in track 75
values in the MME database 25
timeout
CDdrive 111
function 16
timer
unblocking for functions 16
title
playing ona DVD 107
track

changes across multiple media stores 76
played statistics 75
seeking to time in 75

track session
capabilities 37

track sessions 59
“leaks” 66
and synchronization 64
clearing 66
creating 61
creating file-based 63
creating library-based 62
deleting 66
duplicatefids in file-based 62
file-based 61
for Bluetooth devices 181
from multiple playlists 82
iPod 150
library-based 60

212 Index

managing during playback 76
pruning 66
removed mediastores 76
seamless changing 77
seeking to time in 75
setting 64
types 60
viewing next and previous tracks 75
tracks
skipping unplayable 114
unplayable 113
trksessi onvi ew
table 64, 75
two-wire
connection
iPod 143
iPod
connection 143
two-wire connection
iPod 143
typographical conventions xiv

U

unplayable
marking files 113
skipping files 114
unregistering
forevents 21
unsynchronized
mediastore 87
unsynchronized media
metadata 94
URL
modifiers for video output device 9
video output device 9
USB
iPod
connection 144
USB mediastores

duplicate 36
identifying 36
UTF-8 89
UUID 31

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

Vv

vibration
configuring system for environment with
111
timeout 111
video
managing attributes 105
modifiers for output device in URL 9
output device 8
output device URL 9
playing 105, 106
sample configuration 10
viewing
next and previous tracks in a track session
75

W

WWPI nfo. xm 35

Z

zones 3,10
attaching 10
attaching output device to 10
creating 10
detaching 10
detaching output device from 10
examples 6
MME support for 3
output 5
removing 10
zoom
iPod screen 132
Zune device
artwork
retrieving 169
retrieving artwork 169

February 13, 2009

Index

213

