£— AN1823
y’c@ APPLICATION NOTE

Error Correction Code in NAND Flash Memories

This Application Note describes how to implement an Error Correction Code (ECC), in ST NAND Flash
memories, which can detect 2-bit errors and correct 1-bit errors per 256 Bytes.

This Application Note should be downloaded with the c1823.zip file.

INTRODUCTION

When digital data is stored in a memory, it is crucial to have a mechanism that can detect and correct a
certain number of errors. Error Correction Codes (ECC) encode data in such a way that a decoder can
identify and correct certain errors in the data.

Studies on Error Correction Codes started in the late 1940's with the works of Shannon and Hamming,
and since then thousands of papers have been published on the subject.

Usually data strings are encoded by adding a number of redundant bits to them. When the original data is
reconstructed, a decoder examines the encoded message, to check for any errors.

There are two basic types of Error Correction Codes (see Figure 1.):

m Block Codes, which are referred to as (n, k) codes. A block of k data bits is encoded to become a
block of n bits called a code word.

= Convolution Codes, where the code words produced depend on both the data message and a given
number of previously encoded messages. The encoder changes state with every message
processed. The length of the code word is usually constant.

NAND Flash memories typically use Block Codes.

May 2004 1/14

AN1823, APPLICATION NOTE

TABLE OF CONTENTS

INTRODU CTION . ..o e e e e e e e e e e e e 1
BLOCK CODESt e 3
Figure 1. Types of Error Correction CodesS.ttt e 3
SyStemMaAtiC COUBSot 4
Figure 2. Systematic COOESo 4
Figure 3. Example Code WOrd SPace e e e 4
Hamming Codes e 5
Hamming Weight 5
Hamming DisStanCet e e e 5
Error Detection Capabilityo 5
Error Correction Capability 5
ECC FOR MEMORIES e e e e e e e e 6
ECC GeNeratioNn e 6
Table 1. Assignment of Data Bits with ECC Code. i 6
Figure 4. Parity Generationfora 256 Byte Input 6
Pseudo Code for ECC Generationttt e e 7
ECC Detection and COrreCtiono e e 8
Figure 5. ECC Detection Flowchart e e 8
Pseudo Code for ECC Detection and COrrectiont 9
ECC SOFTWARE INTERFACE e e e e e e e 10
ECC HARDWARE CODE GENERATION AND CORRECTION - VERILOGMODEL 11
Figure 6. Hardware Code Generation and COIrection, 11
Table 2. Module Ecc_top Hardware Interface i e 12
CONCLUSION. . .t e e e e e 13
REFERENCES e 13
REVISION HIST ORY . . .o e e e e e e e e e e e e 13
Table 3. Document Revision HiStory e e e 13

J

2/14

AN1823, APPLICATION NOTE

BLOCK CODES
The Block Code family can be divided up into (see Figure 1.):

m Linear Codes, where every linear combination of valid code words (such as a binary sum) produces
another valid code word. Examples of linear codes are:

— Cyclic Codes, where every cyclic shift by a valid code word also yields a valid code word
— Hamming Codes, which are able to detect three errors and correct one.

s Systematic Codes, where each code word includes the exact data bits from the original message of
length k, either followed or preceded by a separate group of check bits of length g (see Figure 2.).

In all cases the code words are longer than the data words on which they are based.

Block codes are referred to as (n, k) codes. A block of k data bits is encoded into a block of n bits called
a code word. The code takes k data bits and computes (n —k) parity bits from the code generator matrix.
Most Block Codes are systematic, in that the data bits remain unchanged, with the parity bits attached
either to the front or to the back of the data sequence.

Figure 1. Types of Error Correction Codes

ERROR
CORRECTION
CODES

4 4

BLOCK CONVOLUTION

Y '

LINEAR SYSTEMATIC

' Y Y '

REPETITION PARITY HAMMING CYCLIC

ai09277

4

3/14

AN1823, APPLICATION NOTE

Systematic Codes

In Systematic Codes, the number of original data bits is k, the number of additional check bits is g, and
the ratio k / (k + q) is called the code rate. Improving the quality of a code often means increasing its re-
dundancy and thus reducing the code rate (see Figure 2.).

The set of all possible code words is called the code space.

Example: The code space of 4-bit code sequences consists of 16 code words. Only ten of them are used,
these are the valid words. Code words not used or unassigned are invalid code words, they should never
be stored. So if one of them is retrieved from the memory the encoder will assume that an error has oc-
curred.

Figure 3., Example Code Word Space, shows the list of all the code words corresponding to a particular
code size, 4 bits in this case.

Figure 2. Systematic Codes

X Xi+1
[ofs]ofofs]ofs]s]ofofofa]oofofofafa]afofofafo]afa]ofofs]s]ofa]afa]o]
q

k q k

ai09278

Figure 3. Example Code Word Space

0000 0001 0010 0011
<¢— 10 Valid (assigned) code words

o 0100 0101 0110 01112
Code space containing

16 possible code words 1000 1001{[10910 1011

<—— 6 Invalid (not used) code words
1100 1101 1110 1111

ai09279

J

4/14

AN1823, APPLICATION NOTE

Hamming Codes

Hamming Codes are the most widely used Linear Block codes.

A Hamming code is usually defined as (2n -1, 2n —n -1), where n is the number of overhead bits, 2n — 1
the block size and 2n —n -1 the number of data bits in the block. All Hamming Codes are able to detect
three errors and correct one. Common Hamming Code sizes are (7, 4), (15,11) and (31, 26). They all have
the same Hamming distance.

The Hamming distance and the Hamming weight are major concepts that are very useful in encoding.

When the Hamming distance is known, the capability of a code to detect and correct errors can be deter-
mined.

Hamming Weight. The Hamming Weight of a code scheme is the maximum number of 1's among valid
code words. In the example illustrated in Figure 3., the Hamming Weight is 3.

Hamming Distance. In continuous variables, distances are measured using Euclidean concepts such as
lengths, angles and vectors.

In binary encoding, the distance between two binary words is called the Hamming distance. It is the num-
ber of discrepancies between two binary sequences of the same size. The Hammering distance measures
how different binary objects are. For example the Hamming distance between sequences 0011001 and
1010100 is 4.

Error Detection Capability. For a code where dnin is the Hamming distance between code words, the
maximum number of error bits that can be detected is:

t=dmin -1
This means that for a code where dmin = 3, one-bit and two-bit errors can be detected.

Error Correction Capability. For a code where dmin is the Hamming distance between code words, the
maximum number of error bits that can be corrected is:

t = [(dmin —1)/2]
This means that for a code where dmin = 3, one bit errors can be corrected.

4

5/14

AN1823, APPLICATION NOTE

ECC FOR MEMORIES

The following list shows common Error Correction capabilities for memory devices:

m SEC (single error correction) Hamming codes.

m SEC-DED (single error correction double error detection) Hsiao codes.

m SEC-DED-SBD (single error correction double error detection single byte error detection) Reddy

codes.
s SBC-DBD (single byte error correction double byte error detection) finite field based codes.

s DEC-TED (double error correction triple error detection) Bose-Chaudhuri-Hocquenghem codes.

ECC Generation

According to the Hamming ECC principle, a 22 bit ECC is generated in order to perform a 1 bit Correction
per 256 Bytes. The Hamming ECC can be applied to data sizes of 1 Byte, 8 Bytes, 16 Bytes, etc.

In the case of the 528 Bytes/264 Word Page NAND Flash memories, the calculation has to be done per
256 Bytes, which means a 22 bit ECC per 2048 bits (approximately 3 Bytes per 256 Bytes). Of the 22 ECC
bits, 16 bits are for line parity and 6 bits are for column parity.
Table 1 shows how the 22 ECC bits are arranged in three Bytes.

For every data Byte in each page, 16 bits for line parity and 6 bits for column parity are generated accord-
ing to the scheme shown in Figure 4.

Table 1. Assignment of Data Bits with ECC Code

ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Ecco® LPO7 LPO6 LPO5 LPO4 LPO3 LP0O2 LPO1 LPOO
Ecc1® LP15 LP14 LP13 LP12 LP11 LP10 LP0O9 LPO8
Ecc2®) CP5 CP4 CP3 CcP2 CP1 CPO 1 1

Note: 1. The first Byte, EccO, contains line parity bits LPO - LPO7.
2. The second Byte, Eccl, contains line parity bits LP08 - LP15.
3. The third Byte, Ecc2, contains column parity bits CPO - CP5, plus two “1”s for Bit 0 and Bit 1.
Figure 4. Parity Generation for a 256 Byte Input
Byte 0 Bit7 | Bit6 | Bit5| Bit4] Bit3 | Bit2| Bit1] Bit0| [LP0] LPO2
Byte 1 Bit7 | Bit6 | Bit5| Bit4| Bit3 | Bit2| Bitl| BitO | |LP1 P14
Byte 2 Bit7 | Bit6 | Bit5] Bit4 | Bit3| Bit2| Bitl] Bit0| [LP0o] LPO3 '
Byte 3 Bit7 | Bit6 | Bit5| Bit4| Bit3 | Bit2| Bitl| BitO | [LP1
Byte 252 |Bit7 |Bit6 |Bit5 |Bit4 |Bit3 |Bit2 |Bit1 |Bito | [LPo] LP02
Byte 253 |Bit7 |Bit6 |Bit5 |Bit4 |Bit3 |Bit2 |Bitl |Bit0O LP1 LP15
Byte 254 |Bit7 |Bit6 |Bit5 |Bit4 |Bit3 |Bit2 |Bit1 |Bit0 | [LPo] LP03 '
Byte 255 |Bit7 |Bit6 |Bit5 |Bit4 |Bit3 |Bit2 |Bitl |Bit0O LP1

[cp1] [cPo] [cp1] [cPo] [cpi] [cPo] [cPi1] [cPo]

[cp3

crP2 ||

CP3

crP2 |

CP5

cP4

ai09280

6/14

573

AN1823, APPLICATION NOTE

Pseudo Code for ECC Generation

The following code implements the Parity Generation shown in Figure 4.

LPL =bit7 O bit6 O bits O bit4 O bit3 0 bit2 0 bitl O bit0O O LPL;

=bit7 O bité O bits O bit4 O bit3 0O bit2 O bitl O bitO O LP11;

O bit4d O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 O bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO
O bitd O bit3 0 bit2 0 bitl O bitO

O

O

o o o o o o oo

LP1;
LP3;
LP2;
LPS;

LP4;

=bit7 O bité O bits 0 bitd O bit3 0O bit2 O bitl O bit0 O LPI1O;

=bit7 0 bité O bits O bit4d O bit3 0 bit2 0 bitl O bit0 O LP13;

70 bite O bits O bitd O bit3 O bit2 O bitl O bit0 O LP12; if (i & 0x80)

it7 0 bite O bits O bit4 O bit3 0 bit2 0 bitl O bit0O O LP15;

it7 0 bité O bits 0O bit4 O bit3 0 bit2 0 bitl O bit0 O LP14;

For i =1 to 256
begi n
if (i & 0x01)
el se
LPO =bit7 O bitée O biths
if (i & 0x02)
LP3 =bit7 O bité O bits
el se
LP2 =bit7 O bité O bits
if (i & 0x04)
LP5 =bit7 O bité O biths
el se
LP4 =Dbit7 O bité O biths
if (i & 0x08)
LP7 =bit7 0O bité O bhiths
el se
LP6 =bit7 O bité O biths
if (i & 0x10)
LPO =bit7 O bité O biths
el se
LP8 =bit7 O bité O biths
if (i & 0x20)
LP11
el se
LP10
if (i & 0x40)

LP13
el se
LP12 = bit

LP15 =b
el se

LP14 =D
CPO = bit6e O bit4 O bit2 O
CPL =bit7 O bits O bit3 O
CP2 =bits O bit4 O bitl O
CP3 =bit7 O bité O bit3 O
CP4 =bit3 0 bit2 O bitl O
G =bit7 0 bite O bits O
end

bito O CM;
bitl O CPL,
bit0 O COP2;

bit2 O O3
bito O G4
bit4 O O

Where 0O means bitwise XOR operation.

4

7/14

AN1823, APPLICATION NOTE

ECC Detection and Correction

Error Correction Codes can detect four different type of results:

= No Error - the result of XOR is ‘0'.

Correctable Error - the result of XOR is a code with 11 bits at ‘1’.

s ECC Error - the result of XOR has only 1 bit at ‘1’, ECC error means that the error is in the ECC area.
= Non-correctable Error - the result of XOR provides random data

When the main area has a 1 bit error, each parity pair (e.g. LPO & LP1) is ‘1’ and ‘0’ or ‘0’ and ‘1".
The fail bit address offset can be obtained by retrieving the following bits from the result of XOR:
Byte Address = (LP15,LP13,LP11,LP9,LP7,LP5,LP3,LP1)
Bit Address = (CP5, CP3,CP1)
When the NAND Flash has more than 2 bit errors, the data cannot be corrected.

Figure 5. ECC Detection Flowchart

New ECC generated
during read

.

XOR previous ECC
with new ECC

All results NO

= zero?

NO

Y

22 bit data =0 11 bitdata =1 All other 1bitdata=1
Correctable on Correctabl
No Error Error P Error 1 ECC Error

ai09281

J

8/14

AN1823, APPLICATION NOTE

Pseudo Code for ECC Detection and Correction

%Detect and correct a 1 bit error for 256 byte bl ock
int ecc_check (data, stored _ecc, new ecc)

begi n

%Basi c Error Detection phase
ecc_xor[0] = new ecc[0] Ostored ecc[O0];

ecc_xor[1]
ecc_xor[2]

new ecc[1] O stored ecc[1];
new ecc[2] [stored_ecc[2];

if ((ecc_xor[0] or ecc_xor[1] or ecc_xor[2]) == 0)

end
el se

begi n

return 0; %No errors

begi n

% Counts the bit nunber
bit_count = BitGount (ecc_xor);

if (bit_count == 11)
begi n
%Set the bit address
bit_address = (ecc_xor[2] >> 3) and O0x01 or
(ecc_xor[2] >> 4) and 0x02 or
(ecc_xor[2] >> 5) and 0x04;

byte address = (ecc_xor[Q0] >> 1) and Ox01 or
(ecc_xor[0] >> 2) and 0x02 or
(ecc_xor[0] >> 3) and 0x04 or
(ecc_xor[Q0] >> 4) and 0x08 or
(ecc_xor[1l] << 3) and 0x10 or
(ecc_xor[1] << 2) and 0x20 or
(ecc_xor[1] << 1) and 0x40 or
(ecc_xor[1] and 0x80);

% Correct bit error in the data
dat a[byte address] =

dat a[byte_address] [0 (0x0l << bit_address);

end
end

return 1;
end
elseif (bit_count == 1)
begi n

% EQCC Code Error Correction
stored ecc[0] = new ecc[0];

stored_ecc[1] new ecc[1] ;

stored_ecc| 2] new ecc[2] ;
return 2;

end

el se

begi n

% Uncorrectabl e Error

return -1,

end

Where [0 means bitwise XOR.

573

9/14

AN1823, APPLICATION NOTE

ECC SOFTWARE INTERFACE

ST supplies a software implementation of the algorithm (c1823.zip file, see REFERENCES). The software
interface implementation consists of two public functions:

voi d ecc_gen (const uchar *data, uchar *ecc_code)

that calculates the 3 Byte ECC code for 256 Bytes (half a page)
and

int ecc_check (uchar *data, uchar *stored ecc, uchar *new ecc)

that detects and corrects a 1 bit error for 256 Bytes (half a page)
Where:

stored_ecc is the ECC stored in the NAND Flash memory

new_ecc is the ECC code generated on the data page read operation.

10/14

J

AN1823, APPLICATION NOTE

ECC HARDWARE CODE GENERATION AND CORRECTION - VERILOG MODEL
Figure 6 shows the schematics of Hardware Code Generation and Correction and Table 2 gives the details
of the functions. The Interface for the hardware model is:

module ecc_top(Data, Index, ECC, EN1, RST, ecc_stored, reg_state, byte_address, bit_address, EN2,

CLK).

Figure 6. Hardware Code Generation and Correction

i_ecc_top
Data=ba|Data = ba i_ecc_check
Index(7:0]=00]Index=00 ecc_stored=ffffff |ecc_stored=ffffff
EN1=0|EN1=St0 ECC=66aa57 | ecc_computed=66aa57 reg_state=1|reg_state=1
RST=0|RST=St0 _ _
k=t | cLk=st1 EN2=St1{EN=St1 address_correction=057|address_correction=057
- - P CLK=St1|CLK=St1
ecc_stored=ffffff | ecc_stored=ffffff ecc_check
EN2=1|EN2=St1 i_ecc_gen ECC=66aa57 |[ECC=66aa57
— reg_state=1 | reg_state=1
Data=ba|Data = ba byte_address=0a | byte_address=0a
Index=00|Index=00 byte_address=7bit | byte_address=7bit
EN1=St0 |EN1=St0 ECC=66aa57 [ECC=66aa57
CLK=St1|CLK=St1
RST=0[RST=St0
ecc_gen
ecc_top
ai09283
1S7] 11/14

AN1823, APPLICATION NOTE

Table 2. Module Ecc_top Hardware Interface

Interface Type Description
Data input [7:0] a single Byte
Index input [7:0] |the current data position in the page (0-255)
ECC output [23:0] |three Bytes of ECC
EN1 input enable for the ecc_gen module
RST input Reset

ecc_stored input [23:0] |the ECC value stored in the NAND Flash memory

define No_Error 000
reg_state output [2:0] a register that shows the state of the define Correctable_Error 001

ecc_check module define Ecc_Error 010

define Non_Correctable_Error 100

byte_address

output [7:0]

Byte address of the defective data bit

bit_address output [2:0] |bit address of the defective data bit
EN2 input enable for the ecc_check module
CLK input Clock

12/14

4

AN1823, APPLICATION NOTE

CONCLUSION

It is recommended to implement an Error Correction Code in devices used for data storage. Hamming
based Block Codes are the most commonly used ECCs for NAND Flash memories. By using a Hamming
ECC in ST NAND Flash memories, two bit errors can be detected and one bit errors corrected. This min-
imizes possible errors and helps to extend the lifetime of the memory.

REFERENCES

= NAND128-A, NAND256-A, NAND512-A, NANDO1G-A, 528 Byte/ 264 Word Page datasheet

m ¢1823.zip file containing ECC software to download from www.st.com

REVISION HISTORY

Table 3. Document Revision History

Date

Version

Revision Details

11-May-2004

1.0

First issue.

4

13/14

AN1823, APPLICATION NOTE

If you have any questions or suggestions concerning the matters raised in this document, please send them to
the following electronic mail addresses:

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -

Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

14/14

4

	INTRODUCTION
	BLOCK CODES
	Figure 1. Types of Error Correction Codes
	Systematic Codes
	Figure 2. Systematic Codes
	Figure 3. Example Code Word Space

	Hamming Codes
	Hamming Weight
	Hamming Distance
	Error Detection Capability
	Error Correction Capability

	ECC FOR MEMORIES
	ECC Generation
	Table 1. Assignment of Data Bits with ECC Code
	Figure 4. Parity Generation for a 256 Byte Input

	Pseudo Code for ECC Generation
	ECC Detection and Correction
	Figure 5. ECC Detection Flowchart

	Pseudo Code for ECC Detection and Correction

	ECC SOFTWARE INTERFACE
	ECC HARDWARE CODE GENERATION AND CORRECTION - VERILOG MODEL
	Figure 6. Hardware Code Generation and Correction
	Table 2. Module Ecc_top Hardware Interface

	CONCLUSION
	REFERENCES
	REVISION HISTORY
	Table 3. Document Revision History

